exit

Mathematics   > Home   > Advances in Pure and Applied Mathematics   > Issue 1 (May 2020)   > Article

∗-Lie higher derivable mappings on ∗-rings

Fonctions ∗-LIE supérieurement dérivables sur les ∗-anneaux


Mohammad Ashraf
Aligarh Muslim University
India

Mohd Shuaib Akhtar
Aligarh Muslim University
India

Bilal Ahmad Wani
Aligarh Muslim University
India



Published on 3 July 2020   DOI : 10.21494/ISTE.OP.2020.0544

Abstract

Résumé

Keywords

Mots-clés

In this paper, it is shown that, if R is a ∗-ring containing a nontrivial self adjoint idempotent which admits a ∗-Lie higher derivable mapping L={Ln}n∈N, then there exists an element ZX,Y (depending on X and Y) in the center Z(R) such that Ln(X+Y)=Ln(X)+Ln(Y)+ZX,Y.

In this paper, it is shown that, if R is a ∗-ring containing a nontrivial self adjoint idempotent which admits a ∗-Lie higher derivable mapping L={Ln}n∈N, then there exists an element ZX,Y (depending on X and Y) in the center Z(R) such that Ln(X+Y)=Ln(X)+Ln(Y)+ZX,Y.

Derivation higher derivation ∗-derivation ∗-Lie derivable mappings ∗-Lie higher derivable mappings

Derivation higher derivation ∗-derivation ∗-Lie derivable mappings ∗-Lie higher derivable mappings