Mathematics > Home > Advances in Pure and Applied Mathematics > Issue 4 (September 2024) > Article
Aymen Ben Amira
Faculty of Sciences of Sfax
Tunisia
Jamel Dammak
Faculty of Sciences of Sfax
Tunisia
Hamza Si Kaddour
Université Claude Bernard Lyon 1
France
Published on 18 September 2024 DOI : 10.21494/ISTE.OP.2024.1198
Let $$$G=(V,E)$$$ and $$$G'=(V,E')$$$ be two digraphs, $$$(\leq 5)$$$-hypomorphic up to complementation, and $$$U:=G\dot{+} G'$$$ be the boolean sum of $$$G$$$ and $$$G'$$$. The case where $$$U$$$ and $$$\overline U$$$ are both connected was studied by the authors and B.Chaari giving the form of the pair$$$\{G, G'\}$$$. In this paper we study the case where $$$U$$$ is not connected and give the morphology of the pair $$$\{G_{\restriction {V({\mathcal C})}},G'_{\restriction {V({\mathcal C})}}\}$$$ whenever $$$C$$$ is a connected component of $$$U$$$.
Let $$$G=(V,E)$$$ and $$$G'=(V,E')$$$ be two digraphs, $$$(\leq 5)$$$-hypomorphic up to complementation, and $$$U:=G\dot{+} G'$$$ be the boolean sum of $$$G$$$ and $$$G'$$$. The case where $$$U$$$ and $$$\overline U$$$ are both connected was studied by the authors and B.Chaari giving the form of the pair$$$\{G, G'\}$$$. In this paper we study the case where $$$U$$$ is not connected and give the morphology of the pair $$$\{G_{\restriction {V({\mathcal C})}},G'_{\restriction {V({\mathcal C})}}\}$$$ whenever $$$C$$$ is a connected component of $$$U$$$.
Digraph graph isomorphism k-hypomorphy up to complementation boolean sum tournament interval
Digraph graph isomorphism k-hypomorphy up to complementation boolean sum tournament interval