exit

Mathematics   > Home   > Advances in Pure and Applied Mathematics   > Forthcoming papers   > Article

[FORTHCOMING] Compatibility of a Jacobi structure and a Riemannian structure on a Lie algebroid

[FORTHCOMING] Compatibilité d’une structure de Jacobi et une structure Riemannienne sur une algébroïde de Lie


Yacine Aït Amrane
USTHB
Algeria

Ahmed Zeglaoui
Université de Saida Dr Moulay Tahar
Algeria



Validated on 22 April 2024   DOI : TBA

Abstract

Résumé

Keywords

Mots-clés

In a preceding paper we introduced a notion of compatibility between a Jacobi structure and a Riemannian structure on a smooth manifold. We proved that in the case of fundamental examples of Jacobi structures : Poisson structures, contact structures and locally conformally symplectic structures, we get respectively Riemann-Poisson structures in the sense of M. Boucetta, (1/2)-Kenmotsu structures and locally conformally Kähler structures. In this paper we are generalizing this work to the framework of Lie algebroids.

In a preceding paper we introduced a notion of compatibility between a Jacobi structure and a Riemannian structure on a smooth manifold. We proved that in the case of fundamental examples of Jacobi structures : Poisson structures, contact structures and locally conformally symplectic structures, we get respectively Riemann-Poisson structures in the sense of M. Boucetta, (1/2)-Kenmotsu structures and locally conformally Kähler structures. In this paper we are generalizing this work to the framework of Lie algebroids.

Jacobi structure Riemannian Poisson structure Kenmotsu structure Locally conformally Kähler structure Lie algebroid

Jacobi structure Riemannian Poisson structure Kenmotsu structure Locally conformally Kähler structure Lie algebroid