Mathématiques > Accueil > Avancées en Mathématiques Pures et Appliquées > Articles à paraître > Article
Pouya Mehdipour
Federal University of Viçosa
Brazil
Sanaz Lamei
University of Guilan
Iran
Validé le 16 novembre 2025 DOI : À venir
We develop topological partitions for m-to-1 local homeomorphisms on compact metric spaces—maps that arise naturally in non-invertible dynamical systems, such as expanding and covering maps. These partitions enable a symbolic representation of the dynamics via the zip shift, an extended bilateral shift in the non-invertible setting. Inspired by Smale’s horseshoe construction, this approach generalizes topological partitions to a broader class of systems and opens new directions for studying their topological and ergodic properties.
We develop topological partitions for m-to-1 local homeomorphisms on compact metric spaces—maps that arise naturally in non-invertible dynamical systems, such as expanding and covering maps. These partitions enable a symbolic representation of the dynamics via the zip shift, an extended bilateral shift in the non-invertible setting. Inspired by Smale’s horseshoe construction, this approach generalizes topological partitions to a broader class of systems and opens new directions for studying their topological and ergodic properties.