exit

Mathématiques   > Accueil   > Avancées en Mathématiques Pures et Appliquées   > Numéro

-
À paraître

Avancées en Mathématiques Pures et Appliquées


Articles parus

[Forthcoming] Contrôle optimal d’une diffusion fractionnée – Problème de Sturm-Liouville sur un graphe étoile

This paper is devoted to parabolic fractional boundary value problems involving fractional derivative of Sturm-Liouville type. We investigate the existence and uniqueness results on an open bounded real interval, prove the existence of solutions to a quadratic boundary optimal control problem and provide a characterization via optimality system. We then investigate the analogous problems for a parabolic fractional Sturm-Liouville problem on a star graph with mixed Dirichlet and Neumann boundary controls.


[Forthcoming] Opérateurs de composition pondérés symétriques complexes sur un espace de Hardy à poids

In this paper various conditions under which a weighted composition operator $$$W_{\psi,\phi}$$$ on the weighted Hardy space $$$H^2(\beta)$$$ becomes complex symmetric with respect to some special conjugation have been explored. We also investigate some important properties of the complex symmetric operator $$$W_{\psi,\phi}$$$ such as hermiticity and isometry.


[Forthcoming] Théorie de diffusion dans les espaces L2 pondérés pour une classe de l’équation de Schrödinger non-linéaire inhomogène défocalisée

In this paper, we consider the following inhomogeneous nonlinear Schrödinger equation (INLS)
$$$i\partial_t u + \Delta u + \mu$$$ |$$$x$$$|$$$^{-b}$$$|$$$u$$$|$$$^\alpha u = 0, \quad (t,x)\in ℝ \times ℝ^d$$$
with $$$b, \alpha$$$ > 0. First, we revisit the local well-posedness in $$$H^1(ℝ^d)$$$ for (INLS) of Guzmán [Nonlinear Anal. Real World Appl. 37 (2017), 249-286] and give an improvement of this result in the two and three spatial dimensional cases. Second, we study the decay of global solutions for the defocusing (INLS), i.e. $$$\mu=-1$$$ when 0 < $$$\alpha$$$ < $$$\alpha^\star$$$ where $$$\alpha^\star = \frac{4-2b}{d-2}$$$ for $$$d\geq 3$$$, and $$$\alpha^\star = \infty$$$ for $$$d=1, 2$$$
by assuming that the initial data belongs to the weighted $$$L^2$$$ space $$$\Sigma =\{u \in H^1(ℝ^d) :$$$ |$$$x$$$|$$$ u \in L^2(ℝ^d) \}$$$. Finally, we combine the local theory and the decaying property to show the scattering in $$$\Sigma$$$ for the defocusing (INLS) in the case $$$\alpha_\star$$$ < $$$\alpha$$$ < $$$\alpha^\star$$$, where $$$\alpha_\star = \frac{4-2b}{d}$$$.


[Forthcoming] Déficience D’une Onde Viscoélastique Non Linéaire : Équation Avec Dissipation Aux Limites

In this work we establish a general decay rate for a nonlinear viscoelastic wave equation with boundary dissipation where the relaxation function satisfies $$$g^{\prime }\left( t\right) \leq -\xi \left( t\right) g^{p} % \left( t\right) , t\geq 0, 1\leq p\leq \frac{3}{2}.$$$ This work generalizes and improves earlier results in the literature.


[Forthcoming] Multiplicité de solutions pour un problème non homogène impliquant un potentiel dans les espaces d’Orlicz-Sobolev

This paper is devoted to the study of the nonhomogeneous problem
$$$ -div (a(|\nabla u|)\nabla u)+a(| u|)u=\lambda V(x)|u|^{m(x)-2}u-\mu g(x,u) \mbox{ in} \ \Omega, \ u=0 \mbox{ on} \ \partial\Omega ,$$$ where $$$\Omega$$$ is a bounded smooth domain in $$$\mathbb{R}^N,\lambda, \mu$$$ are positive real numbers, $$$V(x)$$$ is a potential, $$$ m: \overline{ \Omega} \to (1, \infty)$$$ is a continuous function, $$$a$$$ is mapping such that $$$ \varphi(|t|)t$$$ is increasing homeomorphism from ℝ to ℝ and $$$g: \overline{\Omega}\times ℝ \to ℝ$$$ is a continuous function. We establish there main results with various assumptions, the first one asserts that any $$$\lambda$$$0> is an eigenvalue of our problem. The second Theorem states the existence of a constant $$$\lambda^{*}$$$ such that every $$$\lambda \in (0,\lambda^{*})$$$ is an eigenvalue of the problem. While the third Theorem claims the existence of a constant $$$\lambda^{**}$$$ such that every $$$\lambda \in [\lambda^{**},\infty)$$$ is an eigenvalue of the problem. Our approach relies on adequate variational methods in Orlicz-Sobolev spaces.


Autres numéros :

2020

Volume 20- 11

Numéro 1 (Mai 2020)
Numéro 2 (Septembre 2020)

À paraître

2021

Volume 21- 12

Numéro 1 (Janvier 2021)
Numéro 2 (Mai 2021)