exit

Mathematics   > Home   > Journal

Advances in Pure and Applied Mathematics

Avancées en Mathématiques Pures et Appliquées




APAM - ISSN 1869-6090 - © ISTE Ltd

Aims and scope

Objectifs de la revue

Advances in Pure and Applied Mathematics is an international mathematics journal launched by the Tunisian Mathematical Society (SMT). It welcomes submissions from the entire field of pure and applied mathematics, including : all branches of analysis, applied harmonic analysis (mathematical aspects of signal processing, time-frequency analysis methods, uncertainty principles, sampling theory), partial differential equations, ordinary differential equations, approximations and expansion, mathematical physics, dynamic systems, mathematical and numerical aspects of inverse problems, statistics, probability theory.

 

2023 Impact factor : 0.5
5 Years Impact Factor : 0.6
Cite Score : 0.7
MCQ : 0.4
Scimago Journal Rank : 0.285
Source Normalized Impact Per Paper : 0.381
h-index : 16

 

Abstracting & Indexing

 

  • • Baidu Scholar
  • • CNKI Scholar (China National Knowledge Infrastructure)
  • • CNPIEC - cnpLINKer
  • • Dimensions
  • • EBSCO (relevant databases)
  • • EBSCO Discovery Service
  • • Genamics JournalSeek
  • • Google Scholar
  • • Japan Science and Technology Agency (JST)
  • • J-Gate
  • • JournalGuide
  • • JournalTOCs
  • • KESLI-NDSL (Korean National Discovery for Science Leaders)
  • • Mathematical Reviews (MathSciNet)
  • • Microsoft Academic
  • • MyScienceWork
  • • Naver Academic
  • • Naviga (Softweco)
  • • Norwegian Register for Scientific Journals, Series and Publishers
  • • Primo Central (ExLibris)
  • • ProQuest (relevant databases)
  • • Publons
  • • QOAM (Quality Open Access Market)
  • • ReadCube
  • • SCImago (SJR)
  • • SCOPUS
  • • Semantic Scholar
  • • Sherpa/RoMEO
  • • Summon (ProQuest)
  • • TDNet
  • • Ulrich’s Periodicals Directory/ulrichsweb
  • • WanFang Data
  • • Web of Science - Emerging Sources Citation Index
  • • WorldCat (OCLC)
  • • Zentralblatt Math (zbMATH)

 

 

Scientific Board

Saloua AOUADI
Université Tunis El Manar
[email protected]

 

Hajer BAHOURI
Université Paris –Est
[email protected]

 

Sami BARAKET
Université Tunis El Manar
[email protected]

 

Heinrich BEGEHR
Free University of Berlin
[email protected]

 

Leila BEN ABDELGHANI
University of Monastir
[email protected]

 

Aline BONAMI
Université d’Orleans
[email protected]

 

Youssef BOUDABBOUS
University of Sfax
[email protected]

 

Jacques FARAUT
Sorbonne Université
[email protected]

 

Léonard GALLARDO
Université de Tours
[email protected]

 

Hichem HAJAIEJ
California State University
[email protected]

 

Noomen JARBOUI
University of Sfax
[email protected]

Elyès JOUINI
Université Paris-Dauphine
[email protected]

 

Toshiyuki KOBAYASHI
University of Tokyo
[email protected]

 

Yvon MADAY
Université Paris VI
[email protected]

 

Fethi MAHMOUDI
University Tunis El-Manar
[email protected]

 

Mohamed MAJDOUB
University Tunis El-Manar
[email protected]

 

Abdenacer MAKHLOUF
University of Haute Alsace
[email protected]

 

Habib MARZOUGUI
University of Carthage
[email protected]

 

Sami MUSTAPHA
Université Paris VI
[email protected]

 

Mark PEIGNE
Université de Tours
[email protected]

 

Vicentiu RADULESCU
Université de Craiova
[email protected]

 

Lionel SCHWARTZ
Université Paris 13
[email protected]

 

Hatem ZAAG
Université Paris 13
[email protected]

 

Avancées en mathématiques pures et appliquées est une revue scientifique internationale de mathématiques créée par la Société des Mathématiques de Tunisie (SMT). Elle publie des articles en mathématiques pures et appliquées. En particulier, dans toutes les branches de l’analyse, l’analyse harmonique appliquée (aspects mathématiques du traitement du signal, méthodes d’analyse temps-fréquence, principes d’incertitude, théorie de l’échantillonnage), équations aux dérivées partielles, équations différentielles ordinaires, approximations et développements, physique mathématique, systèmes dynamiques, aspects mathématiques et numériques des problèmes inverses, statistiques, combinatoire et théorie des probabilités.

 

2023 Impact factor : 0.5
5 Years Impact Factor : 0.6
Cite Score : 0.7
MCQ : 0.4
Scimago Journal Rank : 0.285
Source Normalized Impact Per Paper : 0.381
h-index : 16

 

Référencement

 

  • • Baidu Scholar
  • • CNKI Scholar (China National Knowledge Infrastructure)
  • • CNPIEC - cnpLINKer
  • • Dimensions
  • • EBSCO (relevant databases)
  • • EBSCO Discovery Service
  • • Genamics JournalSeek
  • • Google Scholar
  • • Japan Science and Technology Agency (JST)
  • • J-Gate
  • • JournalGuide
  • • JournalTOCs
  • • KESLI-NDSL (Korean National Discovery for Science Leaders)
  • • Mathematical Reviews (MathSciNet)
  • • Microsoft Academic
  • • MyScienceWork
  • • Naver Academic
  • • Naviga (Softweco)
  • • Norwegian Register for Scientific Journals, Series and Publishers
  • • Primo Central (ExLibris)
  • • ProQuest (relevant databases)
  • • Publons
  • • QOAM (Quality Open Access Market)
  • • ReadCube
  • • SCImago (SJR)
  • • SCOPUS
  • • Semantic Scholar
  • • Sherpa/RoMEO
  • • Summon (ProQuest)
  • • TDNet
  • • Ulrich’s Periodicals Directory/ulrichsweb
  • • WanFang Data
  • • Web of Science - Emerging Sources Citation Index
  • • WorldCat (OCLC)
  • • Zentralblatt Math (zbMATH)

 

 

Conseil scientifique

Saloua AOUADI
Université Tunis El Manar
[email protected]

 

Hajer BAHOURI
Université Paris –Est
[email protected]

 

Sami BARAKET
Université Tunis El Manar
[email protected]

 

Heinrich BEGEHR
Free University of Berlin
[email protected]

 

Leila BEN ABDELGHANI
University of Monastir
[email protected]

 

Aline BONAMI
Université d’Orleans
[email protected]

 

Youssef BOUDABBOUS
University of Sfax
[email protected]

 

Jacques FARAUT
Sorbonne Université
[email protected]

 

Léonard GALLARDO
Université de Tours
[email protected]

 

Hichem HAJAIEJ
California State University
[email protected]

 

Noomen JARBOUI
University of Sfax
[email protected]

Elyès JOUINI
Université Paris-Dauphine
[email protected]

 

Toshiyuki KOBAYASHI
University of Tokyo
[email protected]

 

Yvon MADAY
Université Paris VI
[email protected]

 

Fethi MAHMOUDI
University Tunis El-Manar
[email protected]

 

Mohamed MAJDOUB
University Tunis El-Manar
[email protected]

 

Abdenacer MAKHLOUF
University of Haute Alsace
[email protected]

 

Habib MARZOUGUI
University of Carthage
[email protected]

 

Sami MUSTAPHA
Université Paris VI
[email protected]

 

Mark PEIGNE
Université de Tours
[email protected]

 

Vicentiu RADULESCU
Université de Craiova
[email protected]

 

Lionel SCHWARTZ
Université Paris 13
[email protected]

 

Hatem ZAAG
Université Paris 13
[email protected]

 

Forthcoming issues

Forthcoming papers

Journal issues


Recent articles

[FORTHCOMING] Zip Shift encoding of M-TO-1 local homeomorphisms
Pouya Mehdipour, Sanaz Lamei

We develop topological partitions for m-to-1 local homeomorphisms on compact metric spaces—maps that arise naturally in non-invertible dynamical systems, such as expanding and covering maps. These partitions enable a symbolic representation of the dynamics via the zip shift, an extended bilateral shift in the non-invertible setting. Inspired by Smale’s horseshoe construction, this approach generalizes topological partitions to a broader class of systems and opens new directions for studying their topological and ergodic properties.


[FORTHCOMING] On the locally compact vector groups
Batoul Yousefipour, S. Sajjad Gashti, Hassan Myrnouri

This paper presents a necessary and sufficient condition for a topological vector group to be locally compact. We also introduce several sufficient conditions that ensure the local compactness of topological vector groups. Furthermore, we establish a sufficient condition for a topological vector group to be first countable.


[FORTHCOMING] Generalized Pitt’s inequality for the Gabor transform
Ashish Bansal, Ajay Kumar

The generalized forms of Pitt’s inequality for the $$$L^p$$$-Gabor transform on the groups of the form $$$ℝ^n; ℝ^n \times K, K$$$ being a Lie group of type I, in particular, a connected nilpotent Lie group; Heisenberg motion group and diamond Lie groups have been established.


[FORTHCOMING] Indecomposable tournaments with minimum Slater index
Houmem Belkhechine, Cherifa Ben Salha, Rim Romdhane

The Slater index (resp. decomposability index) of a tournament is the minimum number of arcs that must be reversed in that tournament in order to make it a total order (resp. indecomposable (under modular decomposition)). The first author [H. Belkhechine, Decomposability index of tournaments, Discrete Math. 340 (2017) 2986–2994] showed that for every integer $$$n \geq 5$$$, the decomposability index of the $$$n$$$-vertex total order equals $$$\left\lceil \frac{n+1}{4} \right\rceil$$$. It follows that the Slater index of an indecomposable $$$n$$$-vertex tournament is at least $$$\left\lceil \frac{n+1}{4} \right\rceil$$$. This led A. Boussaïri to ask the following question during the thesis defense of the second author on July 2, 2021: what are the indecomposable tournaments $$$T$$$ whose Slater index is minimum over all indecomposable tournaments with the same vertex set as $$$T$$$? These tournaments are then the indecomposable tournaments $$$T$$$ obtained from a total order by reversing exactly $$$\left\lceil \frac{v(T)+1}{4} \right\rceil$$$ arcs, where $$$v(T)$$$ is the number of vertices of $$$T$$$. In this paper, we characterize such tournaments by means of so-called irreducible pairings.


[FORTHCOMING] Curvature estimates for a class of curvature equation in warped product manifolds
Jianbo Yang, Yueming Lu

In this paper, we establish curvature estimates for a class of curvature equation $$$\mathcal{F}_{p}(\kappa)=f(V,\nu) for \frac{n}{2} \leq p \leq n-1$$$ in the warped product manifolds $$$\bar{M}$$$. Additionally, by imposing some constraints on the right-hand side function, we also obtain an existence result for the starshaped hypersurface $$$\Sigma$$$ that satisfies the above equation.


Functional calculus for sectorial operators via the entire function with the growth regularity
Maksim V. Kukushkin

In this paper, having analyzed the previously obtained results devoted to the root vectors series expansion in the Abel-Lidskii sense, we come to the conclusion that the concept can be formulated in the classical terms of the spectral theorem. Though, the spectral theorem for a sectorial operator has not been formulated even in the m-sectorial case, we can consider from this point of view a most simplified case related to the sectorial operator with a discrete spectrum. Thus, in accordance with the terms of the spectral theorem, we naturally arrive at the functional calculus for sectorial operators which is the main focus of this paper. Due to the functional calculus methods, we construct the operator class with the asymptotics more subtle then one of the power type.


From a defective Segre-Veronese embedding to a non-defective one adding a factor
Edoardo Ballico

Fix $$$x\in \mathbb{N}$$$, a multiprojective space $$$Y$$$ and a very ample line bundle $$$L$$$ on $$$Y$$$ . We say that $$$(Y,L)$$$ satisfies $$$\pm{x}\star$$$-non-defectivity if the $$$s$$$-secant variety of $$$(Y, L)$$$ has the expected dimension if either $$$(\dim Y+1)(s+x)\le h^0(L)$$$ or $$$(\dim Y +1)(s-x)\ge h^0(L)$$$. Natural examples arise when $$$L$$$ is the Segre line bundle and all factors have the same dimension (Abo - Ottaviani - Peterson). We take integers $$$r > 0$$$, $$$t\ge 2$$$ and set $$$X:= Y\times \mathbb{P}^r$$$. Let $$$L[t]$$$ be the line bundle on $$$X$$$ coming from $$$L$$$ and $$$\mathcal{O}_{\mathbb{P}^r}(t)$$$. Under certain assumptions on $$$x$$$, dim $$$Y, h^0(L)$$$, $$$r$$$ and $$$t$$$ we prove that $$$L[t]$$$ is not secant defective. Two of the main results are for $$$r\le 2$$$. In particular we extend a recent result by Ballico, Bernardi and Mańduz on the non-defectivity of Segre-Veronese embeddings of multidegree $$$(t_1,\dots ,t_k)$$$ of $$$(\mathbb{P}^2)^k$$$, $$$k\ge 3$$$, to the case in which $$$t_i=1$$$ for $$$y > 0$$$ integers $$$i:$$$ we require $$$y\ge 9$$$.


A practical guide to analyzing discrete models
Jose S. Cánovas

In this paper, we survey valuable results to analyze discrete models frequently appearing in social and natural sciences. We review some well-known results and tools to analyze these systems, trying to make them as practical as possible so that not only mathematicians but also physicists, economists or biologists can use them to explore their models. Applying these methods requires some basic knowledge of computational tools and basic programming. The reviewed topics vary from the local stability of equilibrium points to the characterization of topological and physically observable chaos.

Editorial Board


Editor in Chief

Ali BAKLOUTI
Université de Sfax
Tunisie
[email protected]

 

Honorary Editor

 

Khalifa TRIMECHE
Université de Tunis El Manar
Tunisie
[email protected]


Vice Editors in Chief

Abderrazek KAROUI
Université de Carthage
Tunisie
[email protected]

 

Mohamed SIFI
Université de Tunis El Manar
Tunisie
[email protected]

 

 

The APAM steering committee announces with great regret the death of our colleague Maurice Pouzet, member of the journal’s editorial committee, and expresses all condolences to his family and to the international mathematical community.

 


To contact the editors : [email protected]


Please specify an editor in the submission form according to your research fields.


  Submit a paper