Mathematics > Home > Advances in Pure and Applied Mathematics > Issue
In this paper we consider a class of nonlocal parabolic equations without uniqueness using a new framework developed by Cheskidov and Lu which called evolutionary system. We first prove the existence of weak solutions by using the compactness method. However, the Cauchy problem can be non-unique and we also give a sufficient condition for uniqueness. Then we use the theory of evolutionary system to investigate the asymptotic behavior of weak solutions via attractors and its properties. The novelty is that our results extend and improve the previous results and it seems to be the first results for this kind of system via using evolutionary systems.
Let $$$G$$$ be a permutation group on a set $$$\Omega$$$ with no fixed points in $$$\Omega$$$, and let $$$m$$$ be a positive integer. If for each subset $$$\Gamma$$$ of $$$\Omega$$$ the size $$$\Gamma^{g}-\Gamma|$$$ is bounded, for $$$g\in G$$$, the movement of $$$g$$$ is defined as move $$$(g):=\max{|\Gamma^{g}-\Gamma|}$$$ over all subsets $$$\Gamma$$$ of $$$\Omega$$$, and move $$$(G)$$$ is defined as the maximum of move $$$(g)$$$ over all non-identity elements of $$$g\in G$$$. Suppose that $$$G$$$ is not a 2-group. It was shown by Praeger that $$$|\Omega|\leqslant\lceil\frac{2mp}{p-1}\rceil+t-1$$$, where $$$t$$$ is the number of $$$G$$$-orbits on $$$\Omega$$$ and $$$p$$$ is the least odd prime dividing $$$|G|$$$. In this paper, we classify all permutation groups with maximum possible degree $$$|\Omega|=\lceil\frac{2mp}{p-1}\rceil+t-1$$$ for $$$t=2$$$, in which every non-identity element has constant movement $$$m$$$.
It is shown that the collection of all topologies on a given set $$$X$$$ coincide with the set of subsemirings of the power set $$$\mathcal{P}(X)$$$ (equipped with union and intersection) if and only if $$$X$$$ is finite. Furthermore, given a topological space $$$(X, \mathcal{T})$$$ and a subset $$$A$$$ of $$$X$$$, we characterize when the subspace topology $$$\mathcal{T}_A$$$ is a maximal (resp., a prime) ideal of the semiring $$$\mathcal{T}$$$. As applications, we provide an algebraic characterization of the one-point compactification of a noncompact, Tychonoff space. Moreover, we describe explicitly the semiring homomorphisms from $$$\mathcal{P}(X)$$$ into $$$\mathcal{P}(Y)$$$ in case $$$X$$$ is a finite set and $$$Y$$$ is an arbitrary nonempty set.
In a preceding paper we introduced a notion of compatibility between a Jacobi structure and a Riemannian structure on a smooth manifold. We proved that in the case of fundamental examples of Jacobi structures : Poisson structures, contact structures and locally conformally symplectic structures, we get respectively Riemann-Poisson structures in the sense of M. Boucetta, (1/2)-Kenmotsu structures and locally conformally Kähler structures. In this paper we are generalizing this work to the framework of Lie algebroids.
2024
Volume 24- 15
Issue 1 (January 2024)2023
Volume 23- 14
Issue 1 (January 2023)2022
Volume 22- 13
Issue 1 (January 2022)2021
Volume 21- 12
Issue 3 (Special AUS-ICMS 2020)2020
Volume 20- 11
Issue 1 (May 2020)