TY - Type of reference TI - Un problème inverse pour l’opérateur de Schrödinger avec condition au bord de type Neumann AU - Atef Saci AU - Salah-Eddine Rebiai AB - This article concerns the inverse problem of the recovery of unknown potential coefficient for the Schrödinger equation, in a bounded domain of ℝn with non-homogeneous Neumann boundary condition from a time-dependent Dirichlet boundary measurement. We prove uniqueness and Lipschitz stability for this inverse problem under certain convexity hypothesis on the geometry of the spatial domain and under weak regularity requirements on the data. The proof is based on a Carleman estimate in [12] for Schrödinger equations and its resulting implication, a continuous observability inequality. DO - 10.21494/ISTE.OP.2023.0906 JF - Avancées en Mathématiques Pures et Appliquées KW - Inverse problems, Uniqueness, Stability, Schrodinger equations, Carleman estimates, Inverse problems, Uniqueness, Stability, Schrodinger equations, Carleman estimates, L1 - https://www.openscience.fr/IMG/pdf/iste_apam23v14n1_4.pdf LA - fr PB - ISTE OpenScience DA - 2023/01/13 SN - 1869-6090 TT - An inverse problem for the Schrödinger equation with Neumann boundary condition UR - https://www.openscience.fr/Un-probleme-inverse-pour-l-operateur-de-Schrodinger-avec-condition-au-bord-de IS - Numéro 1 (Janvier 2023) VL - 14 ER -