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RÉSUMÉ. Depuis 1857, le second principe de la thermodynamique est confronté au défi d’un démon, imaginé par Maxwell, 

qui serait capable de diminuer l’entropie d’un gaz à l’aide d’une information sur son état. La réponse généralement admise 

à ce défi suggère que l’effacement de cette information compenserait, selon le principe de Landauer, la réduction d'entropie 

obtenue par le démon. Des expériences récentes portant sur des systèmes physiques à deux états, soumis à des 

fluctuations thermiques à l'échelle nanoscopique, ont cherché soit à prouver le principe de Landauer, soit à réaliser une 

machine de Szilard ou un démon de Maxwell. Nous avons écrit les équations et développé un modèle numérique permettant 

d’observer et de comprendre l'évolution de ces systèmes. Les résultats montrent que l’entropie thermodynamique 

et l’entropie d’information ne sont pas équivalentes. Ils démontrent également que le principe de Landauer a un domaine 

d'application limité et que, grâce à une mémoire à deux états, il est possible d'éliminer une faible quantité d'entropie sans 

dépenser d'énergie, ce qui constitue une violation locale du second principe de la thermodynamique à l’échelle 

nanoscopique. 

ABSTRACT. Since 1857, the second law of thermodynamics has faced the challenge of Maxwell's imagined demon. The 

widely accepted response to this challenge suggests that the demon requires a bit of information to work, and according to 

Landauer's principle, the erasure of this bit must offset the entropy reduction achieved by the demon. Recent experiments 

involving two-state physical systems subject to thermal fluctuations at the nanoscale have aimed to either prove Landauer's 

principle or to demonstrate Szilard engines or Maxwell's demons in practice. We wrote the equations and developed a 

numerical model to simulate the evolution of these systems. The results highlight the distinction between thermodynamic 

entropy and information entropy. They demonstrate that Landauer’s principle has a limited range of applicability and that, 

using a two-state memory, it is possible to eliminate a small amount of entropy without expending energy—challenging the 

second law of thermodynamics at the nanoscale. 

MOTS-CLÉS. entropie, information, principe de Landauer, démon de Maxwell, second principe de la thermodynamique, 

machine de Szilard. 
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1. Introduction 

Ludwig Boltzmann a formulé en 1877 la version statistique du second principe de la 

thermodynamique, par l'équation H = kB log W , où H est l'entropie d'un système à l’équilibre, W son 

poids statistique et kB = 1,38 × 10-23 J/K. Quelques années auparavant, James Clerk Maxwell avait 

développé la théorie cinétique des gaz et imaginé un démon capable de violer le second principe de la 

thermodynamique [1]. En 1929, Leo Szilard [2] proposa une expérience de pensée basée sur une machine 

capable de réduire l'entropie d'une molécule unique, sans dépense d'énergie, par la détection de sa 

position. Selon John von Neumann [3], c'est la connaissance de la position de la molécule qui permet à 

un opérateur de réaliser cette réduction d'entropie – une hypothèse qui préserve la validité du second 

principe en établissant un lien entre information et entropie. En 1962, Rolf Landauer [4], s'appuyant sur 

la formule de Boltzmann, a affirmé que l'effacement d'un bit d'information produit de manière 

irréversible une entropie d'au moins 𝑘𝐵  log2— un principe aujourd’hui largement accepté.  

Des violations transitoires du second principe de la thermodynamique ont été observées dans de petits 

systèmes hors équilibre, et il a été démontré qu'elles se conforment aux théorèmes des fluctuations [5]. 
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Ces violations apparentes disparaissent lorsque les résultats sont moyennés sur un grand nombre 

d’expériences. 

Plus récemment, depuis les années 2010, de nombreuses expériences ont été menées à des niveaux 

d'énergie très faibles, de l'ordre de 𝑘B 𝑇 à la température 𝑇, pour démontrer le principe de Landauer,  

pour implémenter une machine de Szilard ou un démon de Maxwell, ou encore pour explorer la 

thermodynamique de systèmes physiques à deux états, assimilables à des mémoires à un bit. Ces 

systèmes se répartissent en deux catégories : les mémoires bistables  [6-11] caractérisées par un profil 

d’énergie à deux minima, et les mémoires à bascule [12-13], qui fonctionnent comme des systèmes tout-

ou-rien. Dans les deux cas, un actionneur permet de modifier l’énergie potentielle du système. La 

stabilité de ces mémoires est limitée par les fluctuations thermodynamiques ou par un effet tunnel 

quantique, qui induisent des transitions aléatoires entre les deux états. 

Dans un premier article [14], nous avons proposé une approche exploratoire de plusieurs expériences, 

ainsi qu'un bref aperçu historique du lien entre information et entropie. Dans un second article [15], nous 

avons formulé les équations régissant les évolutions quasi-statique et hors équilibre de ces systèmes, en 

supposant connue la fréquence de transition en fonction de la différence de potentiel entre les deux états. 

Nous proposions une explication des violations apparentes du second principe par une hypothèse sur la 

temporalité de l'entropie formulée par Landau et Lifshitz . 

Dans le présent article nous généralisons l’approche précédente et nous analysons plusieurs 

expériences récentes par deux méthodes différentes. Dans la première approche nous calculons 

l'évolution hors équilibre des mémoires bistables à l'aide de l'équation de Langevin. Dans la seconde 

nous obtenons directement les équations de l'évolution quasi-statique des mémoires bistables et des 

mémoires à bascule, à partir de formules classiques de Boltzmann et de Gibbs. Notre analyse montre que 

l'entropie thermodynamique et l'entropie d’information d’un système ne sont pas toujours identiques et 

ne peuvent donc être considérées comme équivalentes. La limite de Landauer apparaît dans les processus 

hors équilibre, mais elle peut être contournée en appliquant des régimes quasi-statiques. Nous avons 

examiné les arguments utilisés par Landauer pour étayer son principe et avons identifié un argument 

discutable dans son raisonnement. Enfin, en analysant plusieurs expériences ayant implémenté une 

machine de Szilard ou un démon de Maxwell, nous montrons qu’elles mettent en évidence une limitation 

du second principe de la thermodynamique à l'échelle nanoscopique. 

Dans la suite nous utilisons 𝑘B comme unité d’entropie et 𝑘B 𝑇 comme unité d’énergie, sauf indication 

contraire. 

2. Opération de reset à zéro d'une mémoire bistable  

Dans son article de 1961, Landauer [4] faisait principalement référence à une mémoire bistable définie 

par un profil d’énergie à deux puits de potentiel séparés par une barrière qui en assure la stabilité (figure 

1, phase 1, et figure 7 à t = 0 en Annexe A1). Ce type de mémoire a été réalisé, par exemple, par Bérut 

et al. [6] et Jun et al. [8], avec une particule colloïdale en suspension dans un liquide, soumise à un profil 

de potentiel créé par une pince optique dans la première étude et par un champ électrique dans la seconde. 

Le mouvement de la particule dépend de quatre facteurs : le mouvement brownien, le frottement 

visqueux, le gradient de potentiel et sa variation temporelle. 

Les travaux de Jun et al. ont permis d'obtenir des résultats d'une grande précision. Nous avons appliqué 

un modèle numérique basé sur l'équation de Langevin pour simuler l'évolution hors équilibre de leur 

système. Le potentiel U(x,t) appliqué à la particule est déterministe, mais le mouvement brownien 

provoque un comportement stochastique. Nous avons calculé les valeurs moyennes des variables sur un 

grand nombre d'expériences, notamment de l'énergie de la particule Us (t), de l'entropie S(t) et de la 

probabilité P(t) de l'état 1. Le travail W fourni par l'actionneur et la chaleur Q fournie par le thermostat 

sont obtenus à partir des variations de Us et S , ces deux quantités étant définies à une constante près. Les 

résultats de la simulation reproduisent les résultats expérimentaux avec une grande précision. 
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Nous avons développé une seconde approche, à partir de la formule d’entropie statistique de Gibbs, 

qui donne les équations régissant toute évolution quasi-statique du système, ce qui nous permet d'obtenir 

directement en fonction de t la valeur moyenne des variables pour un grand nombre d’expériences. Les 

deux voies sont décrites en détail en annexes A1 et A2. 

Ces modèles reproduisent avec une grande précision l'évolution temporelle des variables tant pour les 

processus quasi-statiques que pour les processus hors équilibre. Ils confirment les résultats des 

expériences de Jun et al.[8]. Toutefois, nous ne partageons pas leur interprétation des résultats, comme 

nous le verrons ci-dessous. 

Dans leur expérience la plage de potentiel est très étendue (de 13 à −40). Les calculs correspondants 

sont reportés en annexes A1 et A2. Nous proposons d'appliquer les équations à un protocole plus simple 

où le potentiel varie entre 0 et 13 et selon trois phases au lieu de quatre. Cette approche donne des 

résultats plus simples à observer et à interpréter. Les deux méthodes ont été appliquées à ce protocole 

simplifié (figure 1). Le reset à zéro s'effectue en trois phases de durée égale. Avec une durée totale de 

1200 s, nous obtenons le même résultat que l'expérience de Jun et al.  pour une durée de 940 s. Le profil 

de potentiel initial est un double puits parabolique. En phase 1, la barrière est abaissée symétriquement 

pour créer un puits unique à fond plat. Ce puits plat évolue ensuite en un puits parabolique par 

déplacement du bord droit vers la gauche et création progressive d’un palier à droite. Enfin, le palier 

situé à droite est abaissé pour se transformer en un puits parabolique, ramenant le système à son profil 

initial de double puits symétrique. 

  

Figure 1. Reset à zéro d'une mémoire bistable  

Au début de la phase 1, l'état de la mémoire est initialisé aléatoirement à 0 ou 

1 (la particule se trouve dans le puits de gauche ou de droite). Sur la figure, 

l'état initial est 1. Durant la phase 1, la barrière est abaissée pour créer un fond 

plat, permettant à la particule de se déplacer librement dans un seul puits. Lors 

de la phase 2, le bord droit du puits plat est déplacé vers la gauche, confinant 

progressivement la particule vers la gauche. Enfin, lors de la phase 3, le puits 

de droite est rétabli tandis que la particule reste confinée dans le puits de 

gauche. 

 

La figure 2 illustre l'évolution des variables au cours de l'opération. Le travail final fourni par 

l'actionneur est W = 0,71, ce qui correspond au résultat de l'expérience de Jun et al., compatible avec la 

limite de Landauer (log 2 = 0,693). Les valeurs de la probabilité P de l'état 1, de la chaleur Q et du travail 

W sont présentées, d’une part pour la simulation stochastique (indice sim ) par un calcul par différences 

finies à partir de l’équation de Langevin, d’autre part  pour le processus quasi-statique (indice qs) par 

calcul numérique appliqué aux équations d’évolution (détails en annexes A1 et A2). Pour les deux 

premières phases, les courbes se superposent parfaitement, aux fluctuations près pour P et Q. À la limite 

quasi-statique, l'actionneur reçoit un travail W = - 1,130 lors de l'abaissement de la barrière, mais fournit 

un travail W = 1,823 pour confiner la particule dans le puits de gauche, ce qui donne un travail total        

W = log 2 . 
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Dans la simulation, si la troisième phase est aussi brève que les deux premières, aucun échange de 

chaleur ou de travail n’est visible. Le processus est quasi adiabatique et le travail effectué lors des deux 

premières phases n'est pas récupéré. Il est dissipé, ce qui semble confirmer le principe de Landauer. 

Cependant, si l'on accorde suffisamment de temps à la troisième phase, celle-ci peut devenir quasi-

statique. Comme calculé en annexe A2, cette durée est ici d'environ 1 an. La différence entre le processus 

adiabatique et le processus quasi-statique apparaît clairement sur la figure 2, à la fin de la phase 3. 

Dans ce cas, le travail W est récupéré, le processus devient réversible et le reset à zéro n'est pas 

dissipatif, ce qui contredit le principe de Landauer.  

 

Figure 2. Évolution des variables lors de l'opération de reset à zéro  

(sim = simulation de l'expérience pour tc = 1200 s, qs = limite quasi-statique) 

Durant la phase 1, la probabilité P reste constante à P = 0,5. La mémoire reçoit 

la chaleur Q ≈ 0,71 du thermostat et transfère à l'actionneur le travail W ≈ - 1,13. 

Lors de la phase 2, le travail W augmente jusqu'à log2, tandis que la chaleur Q 

diminue jusqu'à −log2. Durant la phase 3, la simulation ne montre aucun 

changement, ce qui indique un processus adiabatique. Cependant, si le processus 

est quasi-statique, ce qui nécessite un temps extrêmement long (l’échelle de 

temps de la figure se s’applique pas dans ce cas), le travail W est entièrement 

récupéré, rendant l'opération réversible. 

3. Différence entre l'information et l'entropie thermodynamique  

Claude Shannon [17] a défini l'entropie d’information d'une mémoire à un bit par :  

𝐻 = − (𝑃 log 𝑃 + (1 − 𝑃) log (1 − 𝑃))  où P est la probabilité de l’un ou l’autre état. 

Reprenons l’expérience ci-dessus, en processus quasi-statique, et comparons la valeur de H ainsi 

calculée à l'entropie statistique S définie par la formule de Gibbs : 

𝑆 =  − ∑ 𝑃𝑖 log 𝑃𝑖𝑖   𝑜ù   𝑃𝑖 est la probabilité que la particule se trouve à l'abscisse 𝑥𝑖 à l'équilibre (voir 

annexe A2). 

Nous observons que H et S sont égales au début et à la fin du processus, mais qu’elles s’écartent en 

cours de processus (figure 3). Dans la phase 1, la probabilité de l'état 1 reste 𝑃 =  0,5, soit H = log2. En 

revanche, à mesure que la barrière s'abaisse, l'espace des phases de la mémoire augmente, ce qui entraîne 

une augmentation de S jusqu'à 1,403 à la fin de cette phase. 

Ce résultat remet en cause l'équivalence communément admise entre l’entropie thermodynamique et 

l’entropie de Shannon. De plus, dans le cas d'une mémoire bistable, le choix de la frontière 𝑥 entre les 

états 0 et 1 est conventionnel. Pour un double puits symétrique, cette frontière est généralement placée 
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sur l'axe de symétrie, mais rien ne s’oppose à ce que l’on modifie la position de cette frontière, ce qui  

change l'entropie de Shannon, tout en laissant inchangée l'entropie thermodynamique. 

 

Figure 3. Entropie statistique S et entropie d’information H à la limite quasi-statique 

Au début de la phase 1 on a 𝑆 = 𝐻 = log2. Ensuite l'état de la mémoire reste 

aléatoire (𝐻 =  log2), tandis que l'entropie statistique augmente jusqu'à à 

𝑆 = 1.403 à mesure que l'espace des phases s'étend. En phase 2, lorsque la 

mémoire est forcée à l'état 0, les deux entropies diminuent jusqu'à 0. En phase 

3 elles remontent vers leur valeur initiale en restant égales. 
 

Si ces deux entropies ne sont pas équivalentes, il convient de reconsidérer les arguments utilisés par 

Landauer pour établir son principe. Il affirme [4] que pour un bit, un « état initial bien défini correspond, 

selon la définition statistique usuelle de l'entropie 𝑆 =  𝑘B log𝑊 à une entropie nulle ». Il explique 

ensuite : « Les degrés de liberté associés à l'information peuvent, par relaxation thermique, évoluer vers 

n'importe lequel des 2𝑁états possibles (pour un ensemble de 𝑁 bits), et l'entropie peut donc augmenter 

de 𝑘B 𝑁 log2 à mesure que l'information initiale est thermalisée ». Il ajoute que le « reset à un » des 𝑁 

bits thermalisés entraîne une diminution d'entropie de 𝑘B 𝑁 log2 et conclut que « l'entropie d'un système 

fermé ne peut diminuer ; par conséquent, cette entropie doit apparaître ailleurs sous la forme de 

dissipation thermique ». La formulation la plus courante de son principe, équivalente à la formulation 

originale, affirme que l'effacement d'un bit provoque une dissipation d'énergie d'au moins 𝑘B 𝑇 log2. 

Landauer applique la formule de Boltzmann 𝑆 =  𝑘B log𝑊 à une mémoire dans un « état bien 

défini », c'est-à-dire 0 ou 1, ce qui donne S = 0. Cependant, il constate qu'après relaxation thermique, 

l'entropie peut augmenter à 𝑆 =  𝑘B log2, reconnaissant ainsi que l’état initial n’était pas à l'équilibre. 

La limite de son approche réside dans l'application de la formule de Boltzmann à un état « bien défini » 

d'une mémoire bistable, qui est intrinsèquement hors équilibre. Or la formule de Boltzmann ne s’applique 

qu’à un système à l’équilibre. S’il s’agit d’un système macroscopique, celui-ci est soumis à des 

fluctuations dont la moyenne temporelle est nulle. S’il s’agit, comme dans le cas présent, d’un système 

nanoscopique, la formule donne l’entropie moyenne sur un très grand nombre d’expériences, où, de 

manière équivalente, sur un temps très long par rappport au temps de relaxation du système, qui est de 

de l’ordre d’une année dans le cas présent (voir annexe A2).  

Finalement, l'expérience de Jun et al. ne prouve pas le principe de Landauer. Comme dans notre 

simulation, si la durée de la phase finale est suffisamment longue pour que le processus devienne quasi-

statique, l'ensemble du processus devient réversible et le travail W = log 2 dépensé lors des phases 

précédentes peut être récupéré. Par conséquent, cette dissipation, souvent citée comme preuve du 

principe de Landauer, n'apparaît que lorsque la dernière phase est adiabatique et elle peut être évitée si 

cette phase est suffisamment longue pour être quasi-statique. 
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4. Mémoire à décalage et reset à zéro énergétiquement neutre 

En réutilisant le dispositif employé pour la mémoire bistable — une particule colloïdale en suspension 

dans un fluide —, nous pouvons concevoir un autre type de mémoire où l'entropie d'information est 

contrôlée et stable, sans nécessiter de barrière de potentiel. L’idée repose sur le protocole à énergie nulle 

introduit par Gammaitoni [16], avec un puits de potentiel unique, que nous proposons d'appeler mémoire 

à décalage (shift memory). 

  

Figure 4 – Opération NOT de la mémoire à décalage 

Le puits de potentiel se déplace progressivement de gauche à droite. Les 

paramètres physiques de la mémoire (énergie Us, entropie S) restent 

constants. En processus quasi-statique aucun travail ni chaleur n'est échangé, 

la probabilité de l'état 1 passe de 0 à 1 et l'entropie d’information H varie de 

0 à log2 puis revient à 0. L'opération est énergétiquement neutre. 
 

Le puits unique peut être déplacé d'un côté à l'autre pour inverser l’état de la mémoire (opération 

NOT, figure 4). Effectuée de manière quasi-statique, cette opération est énergétiquement neutre. Dans 

ce processus, l'entropie thermodynamique reste constante, tandis que l'entropie  d’information varie entre 

0 et log 2. 

Pour la mémoire à décalage, le reset à zéro est également énergétiquement neutre. Si l'état initial est 

0, aucune action n'est requise. Si l'état initial est 1, il peut être inversé sans dépense d’énergie. On peut 

objecter que la position initiale de la particule doit être connue pour appliquer le protocole, et que cette 

information doit être stockée quelque part puis effacée après l'opération. Mais puisque cette information 

est déjà contenue dans la mémoire elle-même il n'est pas nécessaire de la copier et de la stocker ailleurs. 

Par conséquent, ce type de mémoire remet directement en question le principe de Landauer. 

5. Mémoire à bascule et machine de Szilard   

Une mémoire à bascule est un système physique à deux états, séparés par une différence de potentiel 

contrôlée 𝑈(𝑡). Nous nous référons à deux séries d'expériences portant sur ce type de mémoire. Les 

expériences de Koski et al. [12] visant à réaliser une machine de Szilard, utilisent une boîte à un seul 

électron. Une différence de potentiel électrique appliquée entre deux îlots métalliques agit sur la 

probabilité de présence (état 1) ou d'absence (état 0) d'un électron dans une région intermédiaire 

constituant la boîte. Les équations décrivant l’évolution quasi-statique de ce système sont reportées en 

annexe A3. 

Les expériences de Ribezzi et al. [13] conçues pour réaliser un démon de Maxwell, utilisent un 

fragment d'ADN en épingle à cheveux, dont les deux branches sont liées par des liaisons hydrogène au 

repos (état 1) et peuvent être séparées en tirant sur leurs extrémités (état 0). Un actionneur ajuste le 

potentiel électrique dans le premier cas, et la force de traction exercée sur la molécule dans le second 

cas, afin d'appliquer une différence de potentiel 𝑈(𝑡) entre les deux états. 



© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                                               Page | 7 

Dans ce cas, contrairement à la mémoire bistable, la frontière entre les états 0 et 1 de la mémoire à un 

bit n’est pas défini par un paramètre conventionnel, il y a correspondance logique entre état physique et 

information, et nous observerons que l'entropie thermodynamique et l'entropie de Shannon restent égales 

dans ce système. 

Koski et al. [12] et Ribezzi et al. [13] ont utilisé des mémoires à bascule pour construire une machine 

de Szilard, comme illustré sur la figure 5. Le profil énergétique se compose de deux paliers, avec un 

potentiel de référence zéro à gauche et un potentiel contrôlé U à droite, qui peut être positif pour obtenir 

l’état 0 ou négatif pour l’état 1. 

  

Figure 5. Une machine de Szilard  

Dans l'état A, la mémoire est aléatoirement à l'état 0 ou 1. Lorsqu'un état 0 est 

détecté, U est brusquement porté à une valeur élevée Um  (phase 1), stabilisant 

le bit à 0. L'entropie statistique Sst  diminue de log2 à 0. Dans la phase 2, U 

est progressivement ramené à 0, revenant à l'état initial. Durant cette phase, 

la chaleur Q = log2 est convertie en travail 1. 
 

Initialement  𝑈 =  0 et l’état de la mémoire est aléatoirement 0 ou 1 avec la probabilité 𝑃 =  0,5 . La 

première phase débute lorsque la mémoire est à l'état 0, après une attente aussi longue que nécessaire. 

Le potentiel 𝑈 est alors brusquement porté à une valeur 𝑈𝑚 ≫ 0, assurant ainsi la stabilisation de l'état 

0 (𝑃 ≃ 0). Ce processus est adiabatique (𝑄 =  0) et énergétiquement neutre (𝑈𝑠  =  𝑊 =  0). 

Cependant, l'entropie statistique du système est désormais  𝑆𝑠𝑡  =  0. Elle a diminué de 𝑆𝑠𝑡  = −log2. 

Dans la phase 2, le potentiel 𝑈 est progressivement réduit à 0 et l'entropie 𝑆𝑠𝑡  revient à 0. Le bilan 

énergétique de cette phase est donné par 𝛥𝑈𝑠  =  0 et 𝛥𝑆 =  𝛥𝑄 =  log2 2, d'où l'on obtient 𝛥𝑊 =
 − log2, ce qui signifie qu'une quantité de chaleur 𝑄 =  log2 a été extraite du thermostat, convertie en 

travail et transférée à l'actionneur. Ces réalisations d’une machine de Szilard démontrent qu'il est possible 

de convertir une quantité de chaleur 𝑄 =  log2 en une quantité équivalente de travail, réduisant ainsi 

l'entropie d'un système isolé, ce qui contredit le second principe de la thermodynamique. 

Les auteurs de ces études proposent une interprétation qui permet d’expliquer la diminution d'entropie 

sans enfreindre le second principe de la thermodynamique. Cette interprétation stipule que l'information 

selon laquelle la mémoire est à l'état 0, au début du cycle, doit être stockée dans une mémoire externe, 

et qu’une quantité d'entropie 𝑆 =  log2 est produite lors de l'effacement de cette information, 

conformément au principe de Landauer. L’argument ne tient plus après la réfutation du principe de 

Landauer. 

 
1 La valeur log2 est une limite supérieure, qui peut être approchée dans les meilleures conditions d’expérience. 
2 L’égalité 𝛥𝑆 =  𝛥𝑄 provient du choix des unités (voir en fin d’introduction). 
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De plus, l'information servant à déclencher le cycle est contenue dans la mémoire elle-même ; il s'agit 

du bit correspondant à l'état 0. Par conséquent, il n'est pas nécessaire de la stocker ni de l’effacer dans 

une mémoire externe. 

6. Mémoire à bascule et démon de Maxwell 

Ribezzi et al. [13] ont réalisé un démon de Maxwell dont le fonctionnement est illustré par la figure 6. 

Initialement, le potentiel de la mémoire est 𝑈𝑖  > 0 avec une probabilité 𝑃𝑖 < 0.5 de l'état 1. La mémoire 

est généralement dans l'état 0, qui est le plus probable. Dès qu'une transition vers l'état 1 est détectée, le 

niveau d'énergie 𝑈 est brusquement ramené à une valeur 𝑈𝑚<< 0 pour stabiliser l'état 1, avec une 

probabilité 𝑃𝑚 ≃ 1. 

Lors de la phase 2, le potentiel est ramené de manière quasi-statique à sa valeur initiale 𝑈𝑖. 

L'expérience et la théorie (voir annexe A3, équation [13]) montrent que cette opération a pour résultat la 

transformation de chaleur en travail 𝛥𝑊 = log (1 + exp (𝑈𝑖)), dont la valeur est théoriquement 

illimitée. Cependant plus cette valeur 𝛥𝑊 est élevée, plus le temps d’attente moyen de la phase 1 est 

long, celui-ci étant est proportionnel à exp(𝑈𝑖). 

  

Figure 6. Un démon de Maxwell  

Dans l'état A, l’état du système peut alterner entre 0 (le plus probable) et 1. 

Lorsque l'état 1 est détecté, le potentiel U est forcé à une valeur très basse 

(phase 1 de A à B). Ceci stabilise la mémoire dans l'état 1. Durant la phase 2, 

le potentiel U est ensuite progressivement ramené à sa valeur initiale 𝑈𝑖.  
 

D'après Ribezzi et al., cette réduction d'entropie est compensée par l'effacement des informations 

nécessaires au fonctionnement du processus. Ces informations auraient été stockées sous forme d'un 

nombre croissant de bits pendant la durée d'attente de la première phase, puis effacées, dissipant ainsi de 

l'énergie conformément au principe de Landauer. Cependant, comme pour la machine de Szilard décrite 

précédemment, ces informations résident dans la mémoire elle-même, ce qui élimine le besoin d'une 

mémoire externe pour leur stockage. Elles n’ont donc pas à être effacées. 

Il convient de noter cependant que la réduction d'entropie locale obtenue au sein du système est loin 

d'être exploitable en pratique. En effet, la mémoire fait partie d'un dispositif expérimental pouvant inclure 

une pince optique avec son faisceau laser, ou un système de refroidissement et d'autres équipements 

auxiliaires. Dans les expériences de ce type réalisées à ce jour, ce dispositif génère beaucoup plus 

d'entropie qu'il n'en élimine. Néanmoins, il reste vrai que le second principe de la thermodynamique peut 

être localement violé à des niveaux d'énergie de l'ordre de 𝑘B 𝑇 (c’est-à-dire 4,14 10-21 J à 300 K). 
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7. Entropie statistique et entropie thermodynamique  

Ces deux expériences – la machine de Szilard et le démon de Maxwell – mettent en évidence des 

exceptions au second principe de la thermodynamique. Elles révèlent également une distinction entre 

l’entropie thermodynamique Sth et l’entropie statistique Sst. Par exemple, dans l'état A de la figure 6, le 

profil énergétique reste inchangé, donc l'entropie statistique Sst  demeure constante, alors que chaque 

transition de la mémoire entre l'état 0 et l'état 1 implique un échange de chaleur et d'entropie 

thermodynamique, ΔQ = ΔSth = ± Ui  entre la mémoire et le thermostat. De ce fait, les entropies Sth et Sst 

de la mémoire présentent des différences transitoires. 

On peut noter qu’à l’origine l’entropie statistique introduite par Boltzmann concernait des systèmes 

macroscopiques comportant un très grand nombre d’atomes ou de molécules, et à l’équilibre. Dans le 

cas présent nous considérons un système à 2 états qui ne peut pas être considéré en général à l’équilibre 

puisqu’il est soumis à des transitions stochastiques entre les deux états. Pour revenir aux notions 

d’équilibre et de statistique il faut réaliser un grand nombre d’expériences et en considérer la moyenne 

des résultats.  

8. Conclusion 

Depuis les travaux de Maxwell et de Szilard la question du caractère absolu du second principe de la 

thermodynamique a longtemps été hors de portée de l’expérimentation à l’échelle nanoscopique. 

Plusieurs expériences récentes sur des machines de Szilard et des démons de Maxwell ont produit des 

résultats suffisamment précis qui nous ont permis de mettre évidence des violations locales, minimes 

mais reproductibles, du second principe, même si les dispositifs expérimentaux nécessaires à leur mise 

en œuvre génèrent actuellement beaucoup plus d'entropie qu'ils ne peuvent en éliminer. 

Nous avons également démontré que le principe d'équivalence entre l'entropie thermodynamique et 

l'entropie d’information de Shannon doit être abandonné. Shannon [17] a défini son entropie                   

𝐻 =  − (𝑃0 log 𝑃0 +  𝑃1 log 𝑃1) comme la seule fonction mathématique satisfaisant trois contraintes 

bien définies, qu'il a rencontrées lors de la résolution de problèmes cryptographiques pendant la Seconde 

Guerre mondiale [18]. À partir des travaux de Hartley [19], Shannon a établi sa formule, où H représente 

la quantité minimale d'information requise pour coder un message donné. Sa valeur dépend de 

statistiques de fréquence dans un contexte spécifique. Elle est donc relative à ce contexte, contrairement 

à la formule de Gibbs qui s'applique à un système physique bien défini. Bien que les deux concepts soient 

analogues, ils s'appliquent à des domaines différents.  

La formule de Shannon est couramment utilisée pour la transmission et le stockage de l’information. 

Il a été rapporté [20] que von Neumann a suggéré à Shannon le mot entropie pour sa mesure statistique 

de l’information, ce qui a contribué à l’idée largement acceptée qu’il existe une équivalence entre 

l’entropie thermodynamique et l’entropie d’information [21]. Les expériences étudiées ci-dessus 

montrent que ce n’est pas le cas. De plus, elles diffèrent par leur nature. L'entropie thermodynamique est 

une caractéristique intrinsèque d’un système physique, alors que l'entropie d’information repose 

généralement sur un code et dépend de statistiques d’utilisation de ce code dans un contexte donné [22].  

Disponibilité des données 

Les scripts et documents associés à cette étude sont disponibles dans le dépôt GitHub suivant : 

https://github.com/argou/limits_of_landauer_and_second_law 
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Annexe A 

A1 Simulation d'une mémoire bistable par des équations aux différences finies 

Dans l'expérience de Jun et al. [8], une particule en suspension dans un milieu aqueux est soumise à 

un potentiel virtuel U(x,t) piloté à une fréquence de 100 Hz (soit une période 𝛥𝑡 = 0.01 𝑠). 

Au cours d’une période, la particule est soumise à une force due au gradient de potentiel 𝐹 = − 
𝜕𝑈(𝑥,𝑡)

𝜕𝑥
 

et à un mouvement brownien stochastique. Le mouvement de la particule est régi par l'équation de 

Langevin, à l'exclusion du terme d'inertie qui peut être négligé 3  : 

𝛥𝑥

𝛥𝑡
= −

1



𝜕𝑈

𝜕𝑥
+ √

2 𝐷

𝛥𝑡
 𝑤,  

où w est un bruit blanc de moyenne < 𝑤(𝑡) > =  0 et de variance < 𝑤(𝑡)2 > =  1. 

Le coefficient de frottement visqueux est  =  6 𝜋 𝜂 𝑟  avec 𝜂 =  0.89 10−3Ns/m² pour l'eau, et le 

rayon de la particule est r = 0,1 μm. En utilisant la relation d'Einstein 𝐷 =
𝑘𝐵 𝑇


, on obtient 𝐷 =

 2.5 μm²/s. 

Ainsi, le déplacement de la particule dû au gradient de potentiel et au mouvement brownien pendant 

𝛥𝑡 est : 

𝛥𝑥 = (− 𝐷
𝜕𝑈

𝜕𝑥
+ √ 

2 𝐷

 𝛥𝑡
  𝑤)  𝛥𝑡.          [1] 

Lors de ce déplacement 𝛥𝑥 le transfert de chaleur (positif ou négatif) du thermostat vers la 

particule est : 

𝛥𝑄 = 𝑈(𝑥 +  𝛥𝑥, 𝑡) − 𝑈(𝑥, 𝑡).          [2] 

Le profil de potentiel passe alors de 𝑈(𝑥 +  𝛥𝑥, 𝑡) à  𝑈(𝑥 +  𝛥𝑥, 𝑡 + 𝛥𝑡). 

La variation totale d’énergie de la particule, résultant du mouvement brownien, du gradient de 

potentiel et du travail de l'actionneur, est donnée par: 

𝛥𝑈 = 𝑈(𝑥 +  𝛥𝑥, 𝑡 + 𝛥𝑡) − 𝑈(𝑥, 𝑡).        [3] 

Ainsi, selon la loi de conservation de l'énergie, l'actionneur a fourni un travail : 

𝛥𝑊 = 𝛥𝑈 −  𝛥𝑄.           [4] 

À l'aide de ces équations aux différences finies, nous pouvons simuler numériquement l'évolution de 

la mémoire si nous connaissons l'état initial x₀ et la fonction U(x,t). Pour tenir compte de la stochasticité 

du mouvement brownien, les variables doivent être moyennées sur un grand nombre d'essais. 

Nous avons appliqué cette méthode à l'expérience de Jun et al. Le profil énergétique 𝑈(𝑥, 𝑡) est une 

fonction quartique4 de x, représentée sur la figure 7 en limites de phases. La position initiale de la 

particule est choisie aléatoirement au fond d’un des puits de potentiel gauche ou droit. Le profil U est 

 
3 Selon Volpe et Volpe [23], le terme inertiel est négligeable si 𝛥𝑡/𝜏 < 10. Nous avons ici 𝛥𝑡 = 10 𝑚𝑠, et 𝜏  est le temps de 

relaxation de quantité de mouvement 𝜏 = 𝑚/  soit le rapport de la masse sur le coefficient de frottement visqueux. On a ici 𝛥𝑡/𝜏 =

40 10−9. 

4 On pourra se reporter au site https://github.com/argou/limits_of_landauer_and_second_law où sont définies les fonctions U(x,t) 

des 4 phases du processus. 

https://github.com/argou/limits_of_landauer_and_second_law
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laissé invariant pendant une période de 20 s pour simuler un état initial à l'équilibre.   

Nous avons simulé 𝑛𝑠 =  1440 cycles de 𝑡0  =  0 à 𝑡𝑛𝑡 =  𝑡𝑐 (temps de cycle tc = 940 s). Ainsi, 𝑛𝑡 =
 𝑡𝑐/ 𝛥𝑡 = 940 000 pas de calcul.  

Pour chaque simulation, nous calculons xi,j, Qi,j et Ui,j pour les indices 𝑖 =  0 à 𝑛𝑡, 𝑗 =  1 à 𝑛𝑠.  

À partir de xi,j , nous obtenons la probabilité moyenne de l'état 1 à l'instant ti :   

𝑃𝑖 =
1

𝑛𝑠
 ∑  (0 if 𝑥i,j <  0;  1 si 𝑥i,j  > 0)𝑛𝑠

𝑗=1 ,   

et les vecteurs :  𝑄𝑖 =
1

𝑛𝑠
 ∑ 𝑄i,j 

𝑛𝑠
𝑗=1  et  𝑈𝑖 =

1

𝑛𝑠
 ∑ 𝑈i,j 

𝑛𝑠
𝑗=1 .  

Avec nos unités, définies en introduction, l'entropie thermodynamique est telle que 𝛥𝑆 = 𝛥𝑄. Ainsi, si 

nous prenons pour référencee 𝑆0 = log 2 (pour 𝑃0 = 0.5), nous obtenons : 𝑆𝑖 = 𝑙𝑜𝑔2 + 𝑄𝑖 

 

Figure 7. Profil de potentiel en limites de phase  

 A la fin de la phase 4 (t = tc) on revient au profil initial (t = 0) 

 

L'expérience a été conçue pour valider le principe de Landauer. Le résultat final, tant de l'expérience 

que de la simulation, donne un travail W = 0,71, proche de la limite de Landauer log2. L'évolution des 

variables est illustrée sur les figures 8 et 9 (où elles sont comparées aux valeurs quasi-statiques calculées 

directement selon les équations ci-dessous). 

A2 Équations quasi-statiques d'une mémoire bistable 

La particule est confinée entre les abscisses xmin et xmax . L'intervalle [xmin , xmax] est divisé en N 

segments égaux. Pour un processus quasi-statique, la probabilité que la particule se trouve à une abscisse 

𝑥𝑖 à l'instant t suit la loi de Boltzmann : 

 𝑃𝑖(𝑡) =
1

𝑍(𝑡)
exp(−𝑈𝑖(𝑡))    avec  Z(t) = ∑ exp(−𝑈𝑖(𝑡))𝑁

𝑖=1      [5] 

Dans ce qui suit nous omettons la variable t dont dépendent toutes les variables. L'énergie potentielle 

du système est 𝑈𝑠  =  ∑ 𝑃𝑖 𝑈𝑖
𝑁
𝑖=1 . 

L'entropie statistique est donnée par la formule de Gibbs  𝑆 =  − ∑ 𝑃𝑖 log 𝑃𝑖
𝑁
𝑖=1 ,    [6] 

ainsi   𝑆 =
1

𝑍
 ∑ 𝑈𝑖  exp(−𝑈𝑖)𝑁

𝑖=1 +
log𝑍

𝑍
∑ exp(−𝑈𝑖)𝑁

𝑖=1  

soit  𝑆 = 𝑈𝑠 + log 𝑍.            [7] 

La loi de conservation de l'énergie implique que 𝛥𝑈𝑠 = 𝛥𝑊 + 𝛥𝑄. Compte tenu de notre choix 

d'unités, nous avons 𝛥𝑄 = 𝛥𝑆. 
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Donc, d’après [7] :   𝛥𝑊 = − 𝛥(log 𝑍)        [8] 

Connaissant l'état initial et 𝑈(𝑥, 𝑡) nous pouvons calculer directement les valeurs numériques des 

variables pour un processus quasi-statique, qui sont représentées sur les figures 8 et 9. Ces valeurs 

calculées coïncident avec les résultats de la simulation, sauf à la fin de la phase 4, qui n'est pas réalisée 

de manière quasi-statique dans l'expérience. 

La concordance entre ces deux méthodes obtenues indépendamment — et leur cohérence avec le 

résultat final de l'expérience de Jun et al. — conforte la validité des deux approches. 

 

Figure 8. Évolution du travail W et du potentiel U de la particule 

Les valeurs simulées de W et U correspondent parfaitement aux valeurs 

quasi-statiques (les variables sont stochastiques, mais les fluctuations ne sont 

pas visibles à cette échelle). 

 

  

Figure 9. Évolution de P, Q, S et H 

Les valeurs de simulation Psim et Qsim ne diffèrent des valeurs quasi-

statiques Pqs et Qqs que par les fluctuations, sauf à la fin de la phase 4, qui se 

produit hors équilibre pour la simulation. Les entropies thermodynamique S 

et d’information H sont en général différentes. 

Application à un protocole simplifié 

Dans l'étude de Jun et al. [8], le potentiel peut varier entre 13 et −40 au cours du processus. Ces 

variations importantes rendent difficile la visualisation des valeurs des principaux paramètres pour la 

compréhension du processus.  

Nous proposons un protocole simplifié, qui peut être réalisé avec le même équipement, avec une 

variation de potentiel entre 0 et 13 et une durée totale de 1200 s, divisée en trois phases égales au lieu de 
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940 s en quatre phases. Ce protocole donne les mêmes résultats finaux, en particulier la même valeur W 

= 0,71 (section 2), et est plus facile à interpréter. Il est présenté sur la figure 1, tandis que l'évolution des 

variables du système est montré en figures 2 et 3. 

Le profil énergétique 𝑈(𝑥, 𝑡) est une fonction continûment différentiable composée de segments 

quadratiques de la forme 𝑎 𝑥2, où 𝑎 = 10.8 pour les puits, a = 0 pour les paliers et a = ± 54 pour les 

jonctions intermédiaires, de sorte que les dérivées sont continues. Durant chaque phase, le potentiel 

𝑈(𝑥, 𝑡) évolue par interpolation linéaire entre ses valeurs initiales 𝑈(𝑥, 𝑡𝑖) et finales 𝑈(𝑥, 𝑡𝑓). 

La distance entre les deux minima est 4,8 μm, et le potentiel maximal de la barrière ou des paliers est 

𝑈 =  13. La frontière entre l'état 0 et l'état 1 est définie par l'axe de symétrie de la figure. 

Evaluons quelle doit être la durée de la dernière phase pour qu’elle soit quasi-statique, de sorte que 

l'énergie 𝑊 =  𝑙𝑜𝑔2 puisse être récupérée. A l'aide de la formule de Kramers nous pouvons estimer 

cette durée. La fréquence moyenne de transition d’un état à l’autre proposée par Jun et al.[8] est 

 𝐹 = 𝑓0 exp(𝛥𝑈), où ΔU est la hauteur de la barrière à franchir et 𝑓0  =  2.0 Hz. L'équation différentielle 

décrivant la probabilité de l'état 1 est : 

𝑑𝑃/𝑑𝑡 =  𝐹01 𝑃 −  𝐹10(1 − 𝑃) ,        [9] 

𝐹𝑖𝑗étant la fréquence de transition de l’état i vers l’état j (voir par exemple [24]). Dans notre cas 𝐹01  =

 𝑓0 exp(13).   La formule de Kramers ne s’applique pas directement en début de processus, en l’absence 

de puits de potentiel dans la partie de droite. La formule de répartition de Boltzmann permet de calculer 

𝐹10(𝑡) pour résoudre le problème 5.   

L'intégration numérique de l'équation [9] pour plusieurs durées de la dernière phase donne les résultats 

présentés sur la figure [10].  

   

Figure 10. L'énergie W récupérée par l'actionneur  

durant la dernière phase en fonction de sa durée tc. 

Au cours de l'expérience, le résultat est W ≃ 0 (pour t = 400 s). Il faut environ 1 année pour que le 

processus soit quasi-statique et réversible afin de récupérer l’énergie W = log2. 

A3 Équations quasi-statiques d’une mémoire à bascule  

Les équations quasi-statiques de la mémoire à bascule, déduites des équations de la mémoire bistable 

(annexe A2) sont les suivantes, en prenant 𝑁 =  2 : 

𝑍 = 1 + exp(−𝑈)           [10] 

 
5 Le calcul détaillé est disponible dans le dépôt : https://github.com/argou/limits_of_landauer_and_second_law 
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𝑃 =  1/(1 + exp (𝑈)), équivalent à  𝑈 = log (
1−𝑃

𝑃
)   et à    exp(𝑈) = 

1−𝑃

𝑃
     [11] 

    𝑈𝑠  =  𝑃 𝑈 

𝑆 =  −(𝑃 log𝑃 + (1 − 𝑃) log(1 − 𝑃))  

Nous constatons  𝑄 = 𝛥𝑆 =  𝛥𝐻 

À partir des équations [10] et [11], nous obtenons  𝑍 =
1

1−𝑃
 

Et à partir de l'équation [8] 𝛥𝑊 =  𝛥(log(1 − 𝑃))       [12] 

Application au démon de Maxwell 

Dans le dispositif du démon de Maxwell représenté sur la figure 6 , la mémoire possède initialement 

un niveau d'énergie 𝑈𝑖  > 0  avec une probabilité 𝑃𝑖 de l'état 1. Dès qu'une transition vers l'état 1 se 

produit, 𝑈 est brusquement abaissé à 𝑈𝑚<< 0 pour stabiliser l'état 1 avec 𝑃𝑚 ≃ 1. Le travail requis pour 

cette phase adiabatique est : 

𝛥𝑊1 =  𝑃𝑚 𝑈𝑚 −  𝑈𝑖 =  𝑃𝑚 𝑈𝑚 −  log((1 − 𝑃𝑖)/𝑃𝑖) 

 

Ensuite 𝑈 est ramené de manière quasi-statique à sa valeur initiale 𝑈𝑖. Le travail nécessaire pour la 

seconde phase est :  𝛥𝑊2 = log(1 − 𝑃𝑖) − log (1 − 𝑃𝑚). 

Ainsi : 𝛥𝑊 = 𝛥𝑊1 + 𝛥𝑊2 = log 𝑃𝑖 + 𝑃𝑚 𝑈𝑚 − log(1 − 𝑃𝑚) 

 

Comme 𝑃𝑚  ≃  1, nous avons finalement : 

 

𝛥𝑊 ≃ log 𝑃𝑖  ou  𝛥𝑊 ≃ − log (1 + exp(𝑈𝑖))        [13] 


