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RESUME. Depuis 1857, le second principe de la thermodynamique est confronté au défi d’'un démon, imaginé par Maxwell,
qui serait capable de diminuer I'entropie d’'un gaz a I'aide d’une information sur son état. La réponse généralement admise
a ce défi suggere que 'effacement de cette information compenserait, selon le principe de Landauer, la réduction d'entropie
obtenue par le démon. Des expériences récentes portant sur des systemes physiques a deux états, soumis a des
fluctuations thermiques a I'échelle nanoscopique, ont cherché soit a prouver le principe de Landauer, soit a réaliser une
machine de Szilard ou un démon de Maxwell. Nous avons écrit les équations et développé un modéle numérique permettant
d’observer et de comprendre I'évolution de ces systemes. Les résultats montrent que I'entropie thermodynamique
et I'entropie d’'information ne sont pas équivalentes. lls démontrent également que le principe de Landauer a un domaine
d'application limité et que, grace a une mémoire a deux états, il est possible d'éliminer une faible quantité d'entropie sans
dépenser d'énergie, ce qui constitue une violation locale du second principe de la thermodynamique a I'échelle
nanoscopique.

ABSTRACT. Since 1857, the second law of thermodynamics has faced the challenge of Maxwell's imagined demon. The
widely accepted response to this challenge suggests that the demon requires a bit of information to work, and according to
Landauer's principle, the erasure of this bit must offset the entropy reduction achieved by the demon. Recent experiments
involving two-state physical systems subject to thermal fluctuations at the nanoscale have aimed to either prove Landauer's
principle or to demonstrate Szilard engines or Maxwell's demons in practice. We wrote the equations and developed a
numerical model to simulate the evolution of these systems. The results highlight the distinction between thermodynamic
entropy and information entropy. They demonstrate that Landauer’s principle has a limited range of applicability and that,
using a two-state memory, it is possible to eliminate a small amount of entropy without expending energy—challenging the
second law of thermodynamics at the nanoscale.
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1. Introduction

Ludwig Boltzmann a formulé en 1877 la version statistique du second principe de la
thermodynamique, par I'équation H = ks log W , ou H est I'entropie d'un systeme a 1’équilibre, W son
poids statistique et ks = 1,38 x 102® J/K. Quelques années auparavant, James Clerk Maxwell avait
développé la théorie cinétique des gaz et imaginé un démon capable de violer le second principe de la
thermodynamique [1]. En 1929, Leo Szilard [2] proposa une expérience de pensée basée sur une machine
capable de réduire I'entropie d'une molécule unique, sans dépense d'énergie, par la détection de sa
position. Selon John von Neumann [3], c'est la connaissance de la position de la molécule qui permet a
un opérateur de réaliser cette réduction d'entropie — une hypothése qui preserve la validité du second
principe en établissant un lien entre information et entropie. En 1962, Rolf Landauer [4], s'appuyant sur
la formule de Boltzmann, a affirmé que l'effacement d'un bit d'information produit de maniére
irréversible une entropie d'au moins kg log2— un principe aujourd’hui largement accepte.

Des violations transitoires du second principe de la thermodynamique ont été observées dans de petits
systéemes hors équilibre, et il a été démontré qu'elles se conforment aux théorémes des fluctuations [5].
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Ces violations apparentes disparaissent lorsque les résultats sont moyennés sur un grand nombre
d’expériences.

Plus recemment, depuis les années 2010, de nombreuses expériences ont été menées a des niveaux
d'énergie tres faibles, de l'ordre de kg T a la température T, pour démontrer le principe de Landauer,
pour implémenter une machine de Szilard ou un démon de Maxwell, ou encore pour explorer la
thermodynamique de systemes physiques a deux états, assimilables a des mémoires a un bit. Ces
systémes se répartissent en deux catégories : les mémoires bistables [6-11] caractérisées par un profil
d’énergie a deux minima, et les mémoires a bascule [12-13], qui fonctionnent comme des systemes tout-
ou-rien. Dans les deux cas, un actionneur permet de modifier 1’énergie potentielle du systéme. La
stabilité de ces meémoires est limitée par les fluctuations thermodynamiques ou par un effet tunnel
quantique, qui induisent des transitions aléatoires entre les deux états.

Dans un premier article [14], nous avons proposé une approche exploratoire de plusieurs expériences,
ainsi qu'un bref apercu historique du lien entre information et entropie. Dans un second article [15], nous
avons formulé les équations régissant les évolutions quasi-statique et hors equilibre de ces systemes, en
supposant connue la fréquence de transition en fonction de la différence de potentiel entre les deux états.
Nous proposions une explication des violations apparentes du second principe par une hypothese sur la
temporalité de I'entropie formulée par Landau et Lifshitz .

Dans le présent article nous généralisons 1’approche précédente et nous analysons plusieurs
expériences récentes par deux méthodes différentes. Dans la premiére approche nous calculons
I'évolution hors équilibre des mémoires bistables a l'aide de I'équation de Langevin. Dans la seconde
nous obtenons directement les équations de I'évolution quasi-statique des mémoires bistables et des
mémoires a bascule, a partir de formules classiques de Boltzmann et de Gibbs. Notre analyse montre que
I'entropie thermodynamique et I'entropie d’information d’un systéme ne sont pas toujours identiques et
ne peuvent donc étre considerées comme équivalentes. La limite de Landauer apparait dans les processus
hors équilibre, mais elle peut étre contournée en appliquant des régimes quasi-statiques. Nous avons
examiné les arguments utilisés par Landauer pour étayer son principe et avons identifié un argument
discutable dans son raisonnement. Enfin, en analysant plusieurs expériences ayant implémenté une
machine de Szilard ou un démon de Maxwell, nous montrons qu’elles mettent en évidence une limitation
du second principe de la thermodynamique a I'échelle nanoscopique.

Dans la suite nous utilisons kg comme unité d’entropie et kg T comme unité d’énergie, sauf indication
contraire.

2. Opération de reset a zéro d'une mémoire bistable

Dans son article de 1961, Landauer [4] faisait principalement référence a une mémoire bistable définie
par un profil d’énergie a deux puits de potentiel séparés par une barriére qui en assure la stabilité (figure
1, phase 1, et figure 7 a t = 0 en Annexe Al). Ce type de mémoire a été réalisé, par exemple, par Bérut
et al. [6] et Jun et al. [8], avec une particule colloidale en suspension dans un liquide, soumise a un profil
de potentiel créé par une pince optique dans la premiére étude et par un champ électrique dans la seconde.
Le mouvement de la particule dépend de quatre facteurs: le mouvement brownien, le frottement
visqueux, le gradient de potentiel et sa variation temporelle.

Les travaux de Jun et al. ont permis d'obtenir des résultats d'une grande précision. Nous avons appliqué
un modeéle numérique basé sur I'équation de Langevin pour simuler I'évolution hors équilibre de leur
systéme. Le potentiel U(x,t) appliqué a la particule est déterministe, mais le mouvement brownien
provogue un comportement stochastique. Nous avons calculé les valeurs moyennes des variables sur un
grand nombre d'expériences, notamment de I'énergie de la particule Us (), de I'entropie S(t) et de la
probabilite P(t) de I'état 1. Le travail W fourni par l'actionneur et la chaleur Q fournie par le thermostat
sont obtenus a partir des variations de Uset S, ces deux quantités étant définies a une constante pres. Les
résultats de la simulation reproduisent les résultats expérimentaux avec une grande precision.
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Nous avons développé une seconde approche, a partir de la formule d’entropie statistique de Gibbs,
qui donne les équations régissant toute évolution quasi-statique du systéme, ce qui nous permet d'obtenir
directement en fonction de t la valeur moyenne des variables pour un grand nombre d’expériences. Les
deux voies sont decrites en detail en annexes Al et A2.

Ces modeéles reproduisent avec une grande précision I'évolution temporelle des variables tant pour les
processus quasi-statiques que pour les processus hors équilibre. Ils confirment les résultats des
expériences de Jun et al.[8]. Toutefois, nous ne partageons pas leur interprétation des résultats, comme
nous le verrons ci-dessous.

Dans leur expérience la plage de potentiel est trés étendue (de 13 a —40). Les calculs correspondants
sont reportés en annexes Al et A2. Nous proposons d'appliquer les équations a un protocole plus simple
ou le potentiel varie entre 0 et 13 et selon trois phases au lieu de quatre. Cette approche donne des
résultats plus simples a observer et a interpréter. Les deux méthodes ont été appliquées a ce protocole
simplifié (figure 1). Le reset a zéro s'effectue en trois phases de durée égale. Avec une durée totale de
1200 s, nous obtenons le méme résultat que I'expérience de Jun et al. pour une durée de 940 s. Le profil
de potentiel initial est un double puits parabolique. En phase 1, la barriére est abaissée symeétriqguement
pour créer un puits unique a fond plat. Ce puits plat évolue ensuite en un puits parabolique par
déplacement du bord droit vers la gauche et création progressive d’un palier a droite. Enfin, le palier
situé a droite est abaissé pour se transformer en un puits parabolique, ramenant le systéme a son profil
initial de double puits symétrique.

\ f
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phase 1 phase 2 phase 3
quasi-statique quasi-statique adiabatique
P=05 P=05a0 P=0

Figure 1. Reset a zéro d'une mémoire bistable

Au début de la phase 1, I'état de la mémoire est initialisé aléatoirement & 0 ou
1 (la particule se trouve dans le puits de gauche ou de droite). Sur la figure,
I'état initial est 1. Durant la phase 1, la barriere est abaissée pour créer un fond
plat, permettant a la particule de se déplacer librement dans un seul puits. Lors
de la phase 2, le bord droit du puits plat est déplacé vers la gauche, confinant
progressivement la particule vers la gauche. Enfin, lors de la phase 3, le puits
de droite est rétabli tandis que la particule reste confinée dans le puits de
gauche.

La figure 2 illustre I'évolution des variables au cours de I'opération. Le travail final fourni par
I'actionneur est W = 0,71, ce qui correspond au résultat de I'expérience de Jun et al., compatible avec la
limite de Landauer (log 2 = 0,693). Les valeurs de la probabilité P de I'état 1, de la chaleur Q et du travail
W sont présentées, d’une part pour la simulation stochastique (indice sim ) par un calcul par différences
finies a partir de I’équation de Langevin, d’autre part pour le processus quasi-statique (indice gs) par
calcul numérique appliqué aux équations d’évolution (détails en annexes Al et A2). Pour les deux
premiéres phases, les courbes se superposent parfaitement, aux fluctuations prés pour P et Q. A la limite
quasi-statique, I'actionneur recoit un travail W = - 1,130 lors de I'abaissement de la barriére, mais fournit
un travail W = 1,823 pour confiner la particule dans le puits de gauche, ce qui donne un travail total
W=log2.
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Dans la simulation, si la troisieme phase est aussi breve que les deux premiéres, aucun échange de
chaleur ou de travail n’est visible. Le processus est quasi adiabatique et le travail effectué lors des deux
premiéres phases n'est pas récupéré. Il est dissipé, ce qui semble confirmer le principe de Landauer.
Cependant, si I'on accorde suffisamment de temps a la troisiéme phase, celle-ci peut devenir quasi-
statique. Comme calculé en annexe A2, cette durée est ici d'environ 1 an. La différence entre le processus
adiabatique et le processus quasi-statique apparait clairement sur la figure 2, a la fin de la phase 3.

Dans ce cas, le travail W est récupéré, le processus devient réversible et le reset a zéro n'est pas
dissipatif, ce qui contredit le principe de Landauer.

1.0
log2
0.5 gy, N | Waqs
— Wsim
— = Pqgs
01 —— Psim
Qas
— Qsim
-log2
-1.004
0 te/3 2te/3 tc
phase 1 phase 2 phase 3

Figure 2. Evolution des variables lors de I'opération de reset a zéro

(sim = simulation de I'expérience pour tc = 1200 s, gs = limite quasi-statique)
Durant la phase 1, la probabilité P reste constante a P = 0,5. La mémoire recoit
la chaleur Q = 0,71 du thermostat et transfére a I'actionneur le travail W = - 1,13.
Lors de la phase 2, le travail W augmente jusqu'a log2, tandis que la chaleur Q
diminue jusqu'a —log2. Durant la phase 3, la simulation ne montre aucun
changement, ce qui indique un processus adiabatique. Cependant, si le processus
est quasi-statique, ce qui nécessite un temps extrémement long (I’échelle de
temps de la figure se s’applique pas dans ce cas), le travail W est entiérement
récupéré, rendant I'opération réversible.

3. Différence entre l'information et I'entropie thermodynamique

Claude Shannon [17] a defini I'entropie d’information d'une mémoire a un bit par :
H =—(PlogP + (1 —P)log (1— P)) ouP estla probabilité de I’un ou I’autre état.

Reprenons 1’expérience ci-dessus, en processus quasi-statique, et comparons la valeur de H ainsi
calculée a I'entropie statistique S définie par la formule de Gibbs :

S = —); P;logP; ou P;estlaprobabilité que la particule se trouve a I'abscisse x; a I'équilibre (voir
annexe A2).

Nous observons que H et S sont egales au début et a la fin du processus, mais qu’elles s’écartent en
cours de processus (figure 3). Dans la phase 1, la probabilité de I'état 1 reste P = 0,5, soit H = log2. En
revanche, a mesure que la barriére s'abaisse, I'espace des phases de la mémoire augmente, ce qui entraine
une augmentation de S jusqu'a 1,403 a la fin de cette phase.

Ce resultat remet en cause I'équivalence communément admise entre I’entropie thermodynamique et
I’entropie de Shannon. De plus, dans le cas d'une mémoire bistable, le choix de la frontiére x entre les

états 0 et 1 est conventionnel. Pour un double puits symeétrique, cette frontiere est généralement placée
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sur I'axe de symétrie, mais rien ne s’oppose a ce que 1’on modifie la position de cette frontiére, ce qui
change I'entropie de Shannon, tout en laissant inchangeée I'entropie thermodynamique.
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phase 1 phase 2 phase 3

Figure 3. Entropie statistique S et entropie d’information H a la limite quasi-statique

Au début de laphase 1 ona S = H = log2. Ensuite I'état de la mémoire reste
aléatoire (H = log2), tandis que l'entropie statistique augmente jusqu'a a
S = 1.403 a mesure que I'espace des phases s'étend. En phase 2, lorsque la
mémoire est forcée a I'état 0, les deux entropies diminuent jusqu'a 0. En phase
3 elles remontent vers leur valeur initiale en restant égales.

Si ces deux entropies ne sont pas équivalentes, il convient de reconsidérer les arguments utilisés par
Landauer pour établir son principe. Il affirme [4] que pour un bit, un « état initial bien défini correspond,
selon la définition statistique usuelle de I'entropie S = kg logl” a une entropie nulle ». 1l explique
ensuite : « Les degrés de liberté associés a l'information peuvent, par relaxation thermique, évoluer vers
n'importe lequel des 2V états possibles (pour un ensemble de N bits), et I'entropie peut donc augmenter
de kg N log2 a mesure que lI'information initiale est thermalisée ». Il ajoute que le « reset a un » des N
bits thermalisés entraine une diminution d'entropie de kg N log2 et conclut que « I'entropie d'un systeme
fermé ne peut diminuer ; par conséquent, cette entropie doit apparaitre ailleurs sous la forme de
dissipation thermique ». La formulation la plus courante de son principe, équivalente a la formulation
originale, affirme que I'effacement d'un bit provoque une dissipation d'énergie d'au moins kg T log2.

Landauer applique la formule de Boltzmann S = kg logWW a une mémoire dans un « état bien
défini », c'est-a-dire 0 ou 1, ce qui donne S = 0. Cependant, il constate qu'apres relaxation thermique,
I'entropie peut augmenter a S = kg log2, reconnaissant ainsi que 1’état initial n’était pas a I'équilibre.
La limite de son approche réside dans I'application de la formule de Boltzmann a un état « bien défini »
d'une mémoire bistable, qui est intrinsequement hors équilibre. Or la formule de Boltzmann ne s’applique
qu’a un systéme a I’équilibre. S’il s’agit d’un systéme macroscopique, celui-ci est soumis a des
fluctuations dont la moyenne temporelle est nulle. S’il s’agit, comme dans le cas présent, d’un systéme
nanoscopique, la formule donne I’entropie moyenne sur un trés grand nombre d’expériences, ou, de
maniere équivalente, sur un temps tres long par rappport au temps de relaxation du systeme, qui est de
de I’ordre d’une année dans le cas présent (voir annexe A2).

Finalement, I'expérience de Jun et al. ne prouve pas le principe de Landauer. Comme dans notre
simulation, si la durée de la phase finale est suffisamment longue pour que le processus devienne quasi-
statique, I'ensemble du processus devient réversible et le travail W = log 2 dépensé lors des phases
précedentes peut étre récupéré. Par conséquent, cette dissipation, souvent citée comme preuve du
principe de Landauer, n'apparait que lorsque la derniere phase est adiabatique et elle peut étre évitée si
cette phase est suffisamment longue pour étre quasi-statique.
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4. Mémoire a décalage et reset a zéro énergétiguement neutre

En reutilisant le dispositif employé pour la mémoire bistable — une particule colloidale en suspension
dans un fluide —, nous pouvons concevoir un autre type de mémoire ou I'entropie d'information est
controlée et stable, sans nécessiter de barriere de potentiel. L’idée repose sur le protocole a energie nulle
introduit par Gammaitoni [16], avec un puits de potentiel unique, que nous proposons d'appeler mémoire
a décalage (shift memory).

P=0 P=05 P=1
S5=0 S=0 =0
H=0 H =log2 H=0

Figure 4 — Opération NOT de la mémoire a décalage

Le puits de potentiel se déplace progressivement de gauche a droite. Les
parametres physiques de la mémoire (énergie Us, entropie S) restent
constants. En processus quasi-statique aucun travail ni chaleur n'est échangg,
la probabilite de I'état 1 passe de 0 a 1 et I'entropie d’information H varie de
0 a log2 puis revient a 0. L'opération est énergétiquement neutre.

Le puits unique peut étre déplacé d'un coté a l'autre pour inverser 1’état de la mémoire (opération
NOT, figure 4). Effectuée de maniére quasi-statique, cette opération est énergétiqguement neutre. Dans
ce processus, I'entropie thermodynamique reste constante, tandis que I'entropie d’information varie entre
0 etlog 2.

Pour la mémoire a décalage, le reset a zéro est également énergétiquement neutre. Si I'état initial est
0, aucune action n'est requise. Si I'état initial est 1, il peut étre inversé sans dépense d’énergie. On peut
objecter que la position initiale de la particule doit étre connue pour appliquer le protocole, et que cette
information doit étre stockée quelque part puis effacée apres I'opération. Mais puisque cette information
est déja contenue dans la mémoire elle-méme il n'est pas nécessaire de la copier et de la stocker ailleurs.
Par conséquent, ce type de mémoire remet directement en question le principe de Landauer.

5. Mémoire a bascule et machine de Szilard

Une mémoire a bascule est un systeme physique a deux états, séparés par une différence de potentiel
contrdlée U(t). Nous nous référons a deux series d'expériences portant sur ce type de mémoire. Les
expériences de Koski et al. [12] visant a réaliser une machine de Szilard, utilisent une boite a un seul
électron. Une différence de potentiel électrique appliquée entre deux flots métalliques agit sur la
probabilité de présence (état 1) ou d'absence (état 0) d'un électron dans une région intermédiaire
constituant la boite. Les équations décrivant 1’évolution quasi-statique de ce systéme sont reportées en
annexe A3.

Les experiences de Ribezzi et al. [13] congues pour réaliser un démon de Maxwell, utilisent un
fragment d’ADN en épingle a cheveux, dont les deux branches sont liées par des liaisons hydrogéne au
repos (état 1) et peuvent étre séparées en tirant sur leurs extrémités (état 0). Un actionneur ajuste le
potentiel electrique dans le premier cas, et la force de traction exercée sur la molécule dans le second
cas, afin d'appliquer une différence de potentiel U(t) entre les deux états.
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Dans ce cas, contrairement a la mémoire bistable, la frontiere entre les états O et 1 de la mémoire a un
bit n’est pas défini par un paramétre conventionnel, il y a correspondance logique entre état physique et
information, et nous observerons que I'entropie thermodynamique et I'entropie de Shannon restent égales
dans ce systeme.

Koski et al. [12] et Ribezzi et al. [13] ont utilisé des meémoires a bascule pour construire une machine
de Szilard, comme illustré sur la figure 5. Le profil énergétique se compose de deux paliers, avec un
potentiel de référence zéro a gauche et un potentiel contr6lé U a droite, qui peut étre positif pour obtenir
1’état 0 ou négatif pour I’état 1.

--------------- - e e
phase 1 ) phase 2
état A adiabatique etat B quasi-statique état A
u=0 AU > 0 u>»0 AU <0 U=0
P=05 AQ=0 P=0 AQ = log2 P=05
3,,= log2 AW=10 S=0 AW = - log2 S, = log2

Figure 5. Une machine de Szilard

Dans I'état A, la mémoire est aléatoirement a I'état 0 ou 1. Lorsqu'un état O est
détecté, U est brusquement porté a une valeur élevée Un (phase 1), stabilisant
le bit a 0. L'entropie statistique Sst diminue de log2 a 0. Dans la phase 2, U
est progressivement ramené a 0, revenant a I'état initial. Durant cette phase,
la chaleur Q = log2 est convertie en travail *.

Initialement U = 0 et I’état de la mémoire est aléatoirement 0 ou 1 avec la probabilit¢ P = 0,5 . La
premiére phase débute lorsque la mémoire est a I'état 0, aprés une attente aussi longue que nécessaire.
Le potentiel U est alors brusquement porté a une valeur U,,, > 0, assurant ainsi la stabilisation de I'état
0 (P = 0). Ce processus est adiabatique (4Q = 0) et énergétiquement neutre (AU, = AW = 0).
Cependant, I'entropie statistique du systeme est désormais S, = 0. Elle a diminué de AS;, = —log?2.

Dans la phase 2, le potentiel U est progressivement réduit a 0 et I'entropie S, revient a 0. Le bilan
énergétique de cette phase est donné par AU, = 0 et AS = AQ = log2 2, d'ou I'on obtient AW =
— log2, ce qui signifie qu'une quantité de chaleur Q = log2 a été extraite du thermostat, convertie en
travail et transférée a I'actionneur. Ces réalisations d’une machine de Szilard démontrent qu'il est possible
de convertir une quantité de chaleur Q = log2 en une quantité équivalente de travail, réduisant ainsi
I'entropie d'un systeme isolé, ce qui contredit le second principe de la thermodynamique.

Les auteurs de ces études proposent une interprétation qui permet d’expliquer la diminution d'entropie
sans enfreindre le second principe de la thermodynamique. Cette interprétation stipule que I'information
selon laguelle la mémoire est a I'état 0, au début du cycle, doit étre stockée dans une mémoire externe,
et qu’une quantité d'entropie AS = log2 est produite lors de l'effacement de cette information,
conformément au principe de Landauer. L’argument ne tient plus aprées la réfutation du principe de
Landauer.

! La valeur log2 est une limite supérieure, qui peut étre approchée dans les meilleures conditions d’expérience.

2 ’égalité AS = AQ provient du choix des unités (voir en fin d’introduction).
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De plus, lI'information servant a déclencher le cycle est contenue dans la mémoire elle-méme ; il s'agit
du bit correspondant a I'état 0. Par conséquent, il n'est pas nécessaire de la stocker ni de 1’effacer dans
une mémoire externe.

6. Mémoire a bascule et démon de Maxwell

Ribezzi et al. [13] ont réalisé un démon de Maxwell dont le fonctionnement est illustré par la figure 6.
Initialement, le potentiel de la mémoire est U; > 0 avec une probabilité P; < 0.5 de I'état 1. La mémoire
est généralement dans I'état O, qui est le plus probable. Des qu'une transition vers I'état 1 est détectée, le
niveau d'énergie U est brusquement ramené a une valeur U,,<< 0 pour stabiliser I'état 1, avec une
probabilité P,, = 1.

Lors de la phase 2, le potentiel est ramené de maniere quasi-statique a sa valeur initiale U;.
L'expérience et la théorie (voir annexe A3, équation [13]) montrent que cette opération a pour résultat la
transformation de chaleur en travail AW =log (1 + exp (U;)), dont la valeur est théoriquement
illimitée. Cependant plus cette valeur AW est élevée, plus le temps d’attente moyen de la phase 1 est

long, celui-ci étant est proportionnel & exp(U;).

état A phase 1 état B phase 2 état A
u=1, adiabatique U0 quasi-statique U=,
P=F AU << 0 P=1 AU == 0 P=P
AW = AU
AQ =0

Figure 6. Un démon de Maxwell

Dans I'état A, I’état du systeme peut alterner entre 0 (le plus probable) et 1.
Lorsque I'état 1 est détecté, le potentiel U est forcé a une valeur trés basse
(phase 1 de A a B). Ceci stabilise la mémoire dans I'état 1. Durant la phase 2,
le potentiel U est ensuite progressivement ramené a sa valeur initiale U;.

D'aprés Ribezzi et al., cette réduction d'entropie est compensée par I'effacement des informations
nécessaires au fonctionnement du processus. Ces informations auraient été stockées sous forme d'un
nombre croissant de bits pendant la durée d'attente de la premiere phase, puis effacées, dissipant ainsi de
I'énergie conformément au principe de Landauer. Cependant, comme pour la machine de Szilard décrite
précedemment, ces informations résident dans la mémoire elle-méme, ce qui élimine le besoin d'une
mémoire externe pour leur stockage. Elles n’ont donc pas a étre effacées.

Il convient de noter cependant que la réduction d'entropie locale obtenue au sein du systeme est loin
d'étre exploitable en pratique. En effet, la mémoire fait partie d'un dispositif expérimental pouvant inclure
une pince optique avec son faisceau laser, ou un systéeme de refroidissement et d'autres équipements
auxiliaires. Dans les expériences de ce type réalisées a ce jour, ce dispositif génére beaucoup plus
d'entropie qu'il n'en élimine. Néanmoins, il reste vrai que le second principe de la thermodynamique peut
étre localement violé a des niveaux d'énergie de I'ordre de kg T (c’est-a-dire 4,14 10°2* J a 300 K).
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7. Entropie statistique et entropie thermodynamique

Ces deux expériences — la machine de Szilard et le démon de Maxwell — mettent en évidence des
exceptions au second principe de la thermodynamique. Elles révelent également une distinction entre
I’entropie thermodynamique Sw et I’entropie statistique Sst. Par exemple, dans I'état A de la figure 6, le
profil énergétique reste inchangé, donc l'entropie statistique Sst demeure constante, alors que chaque
transition de la mémoire entre I'état 0 et I'état 1 implique un échange de chaleur et d'entropie
thermodynamique, AQ = ASw =+ U; entre la mémoire et le thermostat. De ce fait, les entropies St et St
de la mémoire présentent des différences transitoires.

On peut noter qu’a I’origine I’entropie statistique introduite par Boltzmann concernait des systemes
macroscopiques comportant un tres grand nombre d’atomes ou de molécules, et a 1’équilibre. Dans le
cas présent nous considérons un systeme a 2 états qui ne peut pas étre considéré en général a I’équilibre
puisqu’il est soumis a des transitions stochastiques entre les deux états. Pour revenir aux notions
d’équilibre et de statistique il faut réaliser un grand nombre d’expériences et en considérer la moyenne
des resultats.

8. Conclusion

Depuis les travaux de Maxwell et de Szilard la question du caractére absolu du second principe de la
thermodynamique a longtemps été hors de portée de I’expérimentation a 1’échelle nanoscopique.
Plusieurs expériences récentes sur des machines de Szilard et des démons de Maxwell ont produit des
résultats suffisamment précis qui nous ont permis de mettre évidence des violations locales, minimes
mais reproductibles, du second principe, méme si les dispositifs expérimentaux nécessaires a leur mise
en ceuvre générent actuellement beaucoup plus d'entropie qu'ils ne peuvent en éliminer.

Nous avons également démontré que le principe d'équivalence entre I'entropie thermodynamique et
I'entropie d’information de Shannon doit étre abandonné. Shannon [17] a défini son entropie
H = — (P,logP, + P;logP;) comme la seule fonction mathéematique satisfaisant trois contraintes
bien définies, qu'il a rencontrées lors de la résolution de problémes cryptographiques pendant la Seconde
Guerre mondiale [18]. A partir des travaux de Hartley [19], Shannon a établi sa formule, ou H représente
la quantité minimale d'information requise pour coder un message donné. Sa valeur dépend de
statistiques de fréquence dans un contexte spécifique. Elle est donc relative a ce contexte, contrairement
a la formule de Gibbs qui s'applique a un systeme physique bien défini. Bien que les deux concepts soient
analogues, ils s'appliquent a des domaines différents.

La formule de Shannon est couramment utilisée pour la transmission et le stockage de I’information.
Il a été rapporté [20] que von Neumann a suggeré a Shannon le mot entropie pour sa mesure statistique
de I’information, ce qui a contribué¢ a 1’idée largement acceptée qu’il existe une équivalence entre
I’entropie thermodynamique et 1’entropie d’information [21]. Les expériences étudiées ci-dessus
montrent que ce n’est pas le cas. De plus, elles différent par leur nature. L'entropie thermodynamique est
une caractéristique intrinseque d’un systeme physique, alors que I'entropie d’information repose
généralement sur un code et dépend de statistiques d’utilisation de ce code dans un contexte donné [22].

Disponibilité des données

Les scripts et documents associés a cette etude sont disponibles dans le dépot GitHub suivant :
https://github.com/argou/limits_of landauer_and second_law
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Annexe A
A1l Simulation d'une mémoire bistable par des équations aux différences finies

Dans I'expérience de Jun et al. [8], une particule en suspension dans un milieu aqueux est soumise a
un potentiel virtuel U(x,t) piloté a une fréquence de 100 Hz (soit une période At = 0.01 s).

aUu(x,t)
\ - - - Ve - Ve - ax
et a un mouvement brownien stochastique. Le mouvement de la particule est régi par I'équation de

Langevin, a I'exclusion du terme d'inertie qui peut étre négligé * :

Au cours d’une période, la particule est soumise a une force due au gradient de potentiel F = —

Ax 19U 2D

At y 0x At

ol w est un bruit blanc de moyenne < w(t) >= 0 et de variance < w(t)? >= 1.

Le coefficient de frottement visqueux est y = 6 tnr avec n = 0.89 1073Ns/m2 pour I'eau, et le
rayon de la particule est r = 0,1 um. En utilisant la relation d'Einstein D = kBTT, on obtient D =

2.5 um?/s.

Ainsi, le déplacement de la particule d au gradient de potentiel et au mouvement brownien pendant
At est :

ou 2D
Ax—(-Daﬁ' ’A—tW>At [1]

Lors de ce déplacement Ax le transfert de chaleur (positif ou negatif) du thermostat vers la
particule est :

AQ = U(x + Ax,t) — U(x,t). [2]
Le profil de potentiel passe alors de U(x + 4x,t) & U(x + Ax,t + At).

La variation totale d’énergie de la particule, résultant du mouvement brownien, du gradient de
potentiel et du travail de I'actionneur, est donnée par:

AU = U(x + Ax,t + At) — U(x, t). [3]
Ainsi, selon la loi de conservation de I'énergie, I'actionneur a fourni un travail :
AW = AU — AQ. [4]

A l'aide de ces équations aux différences finies, nous pouvons simuler numériquement I'évolution de
la mémoire si nous connaissons I'état initial xo et la fonction U(x,t). Pour tenir compte de la stochasticité
du mouvement brownien, les variables doivent étre moyennées sur un grand nombre d'essais.

Nous avons appliqué cette méthode a I'expérience de Jun et al. Le profil énergétique U(x, t) est une
fonction quartique* de x, représentée sur la figure 7 en limites de phases. La position initiale de la
particule est choisie aléatoirement au fond d’un des puits de potentiel gauche ou droit. Le profil U est

3 Selon Volpe et Volpe [23], le terme inertiel est négligeable si At/t < 10. Nous avons ici At = 10 ms, et T est le temps de
relaxation de quantité de mouvement T = m/y soit le rapport de la masse sur le coefficient de frottement visqueux. On a ici At/7 =
40 107°.

4 On pourra se reporter au site https://github.com/argou/limits of landauer and second law ol sont définies les fonctions U(x,t)

des 4 phases du processus.
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laissé invariant pendant une période de 20 s pour simuler un état initial a I'équilibre.
Nous avons simulé ns = 1440 cyclesde t, = 0at,; = tc (temps de cycle tc = 940 s). Ainsi, nt =
tc/ At = 940 000 pas de calcul.

Pour chaque simulation, nous calculons Xij, Qijet Uijpour les indicesi = 0ant,j = 1ans.

A partir de xij, nous obtenons la probabilité moyenne de I'état 1 & I'instant t; ;

1 . .
Pi = E ;lil (0 lfxi’]' < 0,' 1si xi‘j > 0),
1 1

et les vecteurs : Q; = — 12,Qi; et U, = — P21 Uiy
Avec nos unités, définies en introduction, I'entropie thermodynamique est telle que 4S = 4Q. Ainsi, si
nous prenons pour référencee S, = log 2 (pour P, = 0.5), nous obtenons : S; = log2 + Q;

40 A

204

U(kBT)
o

=20

—40 4

x (um)

Figure 7. Profil de potentiel en limites de phase
A la fin de la phase 4 (t = tc) on revient au profil initial (t = 0)

L'expérience a été congue pour valider le principe de Landauer. Le résultat final, tant de I'expérience
que de la simulation, donne un travail W = 0,71, proche de la limite de Landauer log2. L'évolution des
variables est illustrée sur les figures 8 et 9 (ou elles sont comparées aux valeurs quasi-statiques calculées
directement selon les équations ci-dessous).

A2 Equations quasi-statiques d'une mémoire bistable

La particule est confinée entre les abscisses Xmin €t Xmax . L'intervalle [Xmin, Xmax] €st divisé en N
segments égaux. Pour un processus quasi-statique, la probabilité que la particule se trouve a une abscisse
x; a l'instant t suit la loi de Boltzmann :

1
Pi(t) = ;5 exp(=Ui(1)) avec Z(t) = iz exp(—U;(1)) [5]

Dans ce qui suit nous omettons la variable t dont dépendent toutes les variables. L'énergie potentielle

du systtme est U, = XN, P, U;.

L 'entropie statistique est donnée par la formule de Gibbs S = — XYY, P, log P;, [6]
- 1

ainsi S = % YN, U exp(—U;) + O%ZZ{-V:l exp(—U;)

soit S =Us +logZ. [7]

La loi de conservation de I'énergie implique que AU, = AW + AQ. Compte tenu de notre choix
d'unités, nous avons 4Q = 4S.
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Donc, d’aprés [7] : AW = — A(log Z) [8]

Connaissant I'état initial et U(x,t) nous pouvons calculer directement les valeurs numériques des
variables pour un processus quasi-statique, qui sont représentées sur les figures 8 et 9. Ces valeurs
calculées coincident avec les résultats de la simulation, sauf a la fin de la phase 4, qui n'est pas réalisée
de maniére quasi-statique dans l'expérience.

La concordance entre ces deux méthodes obtenues indépendamment — et leur cohérence avec le
résultat final de I'expérience de Jun et al. — conforte la validité des deux approches.

0 tc/a tc/2 3tc/4 te
t

Figure 8. Evolution du travail W et du potentiel U de la particule

Les valeurs simulées de W et U correspondent parfaitement aux valeurs
quasi-statiques (les variables sont stochastiques, mais les fluctuations ne sont
pas visibles a cette échelle).

- +/-log2
— 5gs
— Hqs
----- Pqgs
—  Psim
""" Qqgs
Qsim

=05+

- ) e
Lo e ""-‘Mixn;,;s--:aa'-*w‘*‘*"“w |

0 t/a tcf2 3tc/a te
t

Figure 9. Evolution de P, Q, S et H

Les valeurs de simulation Psim et Qsim ne difféerent des valeurs quasi-
statiques Pgs et Qqgs que par les fluctuations, sauf a la fin de la phase 4, qui se
produit hors équilibre pour la simulation. Les entropies thermodynamique S
et d’information H sont en général différentes.

Application & un protocole simplifié

Dans I'étude de Jun et al. [8], le potentiel peut varier entre 13 et —40 au cours du processus. Ces
variations importantes rendent difficile la visualisation des valeurs des principaux parameétres pour la
compréhension du processus.

Nous proposons un protocole simplifié, qui peut étre réalisé avec le méme équipement, avec une
variation de potentiel entre 0 et 13 et une durée totale de 1200 s, divisée en trois phases égales au lieu de
© 2026 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr Page | 13



940 s en quatre phases. Ce protocole donne les mémes résultats finaux, en particulier la méme valeur W
= 0,71 (section 2), et est plus facile a interpréter. Il est présenté sur la figure 1, tandis que I'évolution des
variables du systéme est montre en figures 2 et 3.

Le profil énergétique U(x,t) est une fonction continlment différentiable composée de segments
quadratiques de la forme a x2, ot a = 10.8 pour les puits, a = 0 pour les paliers et a = + 54 pour les
jonctions intermédiaires, de sorte que les dérivées sont continues. Durant chaque phase, le potentiel
U(x, t) évolue par interpolation linéaire entre ses valeurs initiales U(x, t;) et finales U (x, t;).

La distance entre les deux minima est 4,8 um, et le potentiel maximal de la barriére ou des paliers est
U = 13. La frontiére entre I'état O et I'état 1 est définie par I'axe de symeétrie de la figure.

Evaluons quelle doit étre la durée de la derniere phase pour qu’elle soit quasi-statique, de sorte que
I'énergie W = log?2 puisse étre récupérée. A l'aide de la formule de Kramers nous pouvons estimer
cette durée. La fréquence moyenne de transition d’un état a 1’autre proposée par Jun et al.[8] est
F = f, exp(4U), ou AU est la hauteur de la barriere a franchir et f; = 2.0 Hz. L'équation différentielle
décrivant la probabilité de I'état 1 est :

dP/dt = Fy, P — F(1—P), [9]

F;étant la fréquence de transition de I’état i vers I’¢état j (voir par exemple [24]). Dans notre cas Fy; =
fo exp(13). Laformule de Kramers ne s’applique pas directement en début de processus, en 1’absence
de puits de potentiel dans la partie de droite. La formule de répartition de Boltzmann permet de calculer
F,0(t) pour résoudre le probléme °.

L'intégration numérique de I'équation [9] pour plusieurs durées de la derniere phase donne les résultats
présentés sur la figure [10].

0.8
o6y log2
—— lan
e N I 1 mois
§ 0.4 —— 1 semaine
- 1 jour
« 1 heure
0.24

0 0.2 0.4 0.6 0.8 1
t/tc

Figure 10. L'énergie W récupérée par l'actionneur
durant la derniére phase en fonction de sa durée tc.

Au cours de I'expérience, le résultat est W =~ 0 (pour t = 400 s). Il faut environ 1 année pour que le
processus soit quasi-statique et réversible afin de récupérer 1’énergie W = log2.

A3 Equations quasi-statiques d’'une mémoire a bascule

Les équations quasi-statiques de la mémoire a bascule, déduites des équations de la mémoire bistable
(annexe A2) sont les suivantes, en prenant N = 2:

Z =1+exp(-U) [10]

5 Le calcul détaillé est disponible dans le dépbt : https://github.com/argou/limits_of landauer_and_second_law
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P = 1/(1+ exp (U)), équivalenta U = log (%) eta exp(U) = % [11]
U, =PU
S = —(PlogP + (1 —P)log(1 - P))

Nous constatons Q =4S = AH

A partir des équations [10] et [11], nous obtenons  Z = ﬁ

Et a partir de I'équation [8] AW = A(log(1 — P)) [12]

Application au démon de Maxwell

Dans le dispositif du démon de Maxwell représenté sur la figure 6 , la mémoire posséde initialement
un niveau d'énergie U; > 0 avec une probabilité P; de I'état 1. Des qu'une transition vers I'état 1 se
produit, U est brusquement abaissé a U,,<< 0 pour stabiliser I'état 1 avec P,, = 1. Le travail requis pour
cette phase adiabatique est :

AW1 = PmUm — Ui = PmUm — log((1—P)/P;)

Ensuite U est ramené de maniére quasi-statique a sa valeur initiale U;. Le travail nécessaire pour la
seconde phase est : AW, = log(1 — P;) —log (1 — B,,).

Ainsi : AW = AW, + AW, =log P; + B,, U,,, — log(1 — B,,)
Comme P,, = 1, nous avons finalement :

AW =~logP; ou AW = —log (1 + exp(U,)) [13]
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