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ABSTRACT. In this paper we report on our progress with SiGe gate-normal / line tunneling FETs, highlighting recent 
advancements by the example of three transistor concepts. We demonstrate the unique characteristics shared by these 
transistors, such as the on-current proportionality to the source-gate-channel overlap area and explain the obstacles 
imposed by fringing fields leading to parasitic tunneling at the edges of the tunneling area. Our experimental results show 
that adding counter doping to the channel provides an efficient means to mitigate penalties to the subthreshold swing 
caused by parasitic tunneling paths and additionally helps to improve the on-current and Ion/Ioff-ratio. Moreover, we point 
out the dependence of the superlinear onset on the tunneling transmission probability with a focus on the doping profile at 
the tunneling junction. We consider the role of traps on the subthreshold swing within the scope of temperature 
dependent electrical measurements. Furthermore, we show that by avoiding ion implantation and hence crystal defects as 
much as possible, smaller minimum subthreshold swings can be reached. At last, taking the experience acquired on the 
three transistors concepts into consideration, we propose an advanced TFET concept. 
KEYWORDS. TFET, line tunneling, trap assisted tunneling, superlinear onset, counter doping. 

1. Introduction 

Tunneling field-effect transistors (TFETs) bear the fundamental capability of achieving 
sub-60 mV/dec switching at room temperature, the physical limit inherent to the MOSFET operation 
principle. By exploiting these steep slope characteristics, a significant power reduction based on supply 
voltage ( ஽ܸ஽) scaling is anticipated for a potential use of TFETs in future integrated circuits (IC). 
Accordingly, a diverse field of TFET research has developed, including studies on Group IV materials 
[CHOI 07, KNO 13], III-V semiconductors and heterojunction designs [TAK 16, MEM 16b], nanowires [MEM 16a], 
2D materials [JENA 13, SAR 15], gate-oxide scaling [AHN 17], pocket doping [BLA 15], electron-hole bilayer 
FET [LAT 12] and alternate architectures. Concerning TFET architecture, the so called gate-normal or 
line tunneling concepts have attracted attention, due to their potential to achieve higher on-currents and 
better average SS than conventional designs [AGA 10]. In these transistors the tunneling path is aligned 
with the electric field of the gate. The design is a means to increase the extent of the tunneling junction 
taking on the challenge of low on-currents, caused by small tunneling probabilities in indirect 
semiconductors. 

The idea of gate-normal tunneling was first mentioned in refs. [BOW 08, PAT 09] in the framework of 
simulations analyzing a configuration where the source doping region undercuts the gate with an ultra-
shallow pocket of opposite dopants sandwiched between gate and source. Much work was initially 
performed on the III/V-system, where line tunneling FETs (L-TFETs) were demonstrated using 
InP/InGaAs [ZHOU 11], as well as AlGaSb/InAs achieving on-currents close to 80 μA/μm [LU 12] and even 
exceeding 180 μA/μm [ZHOU 12] in InAs/GaSb TFETs. Moreover, distinct TFET characteristics like 
NDR were shown in experiment [YU 13]. A multitude of simulations was performed, e.g. concerning the 
optimal geometry and electrostatics of III/V L-TFETs [LI 12, HSU 16]. Detailed theoretical studies 
investigating the turn-on abruptness of L-TFETs in dependence of source doping, pocket doping, oxide 
thickness, gate alignment and materials taking quantum confinement into account were contributed in 
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Figure 2. Three different concepts to achieve line tunneling, (a) by inverting a moderately doped source (n-

TFET) [SCHM 14], (b) at an n+p+-SiGe junction (p-TFET) [BLA 16] and (c) in a heterojunction n-TFET [GLA 17b]. In 

each figure the line tunneling paths are delineated by white arrows and a parasitic tunneling path caused by 

elevated fringing fields at the edge of the line tunneling area is indicated in red. 

3. Line Tunneling FET designs 

Realizations of L-TFETs may rely on different tunneling junction concepts as shown in Figure 2. 
The junction in Figure 2(a) is created by inversion of the SiGe source in close proximity to the 
SiGe/gate dielectric (HfO2) interface. This imposes a limit to the maximum value of the doping 
concentration [SCHM 14]. In case of excessively large doping ሺ൐ 5 ∙ 10ଵଽ	ܿ݉ିଷ), inverting the source 
electrostatically through the gate is inefficient, resulting in a small ܫ௢௡/ܫ௢௙௙-ratio. On the other hand, 
high source doping is needed to achieve a high tunneling probability and on-current, which makes it a 
challenge to meet all the requirements for high efficiency. The tunneling junction of the L-TFET 
displayed in Figure 2(b) is composed of an n+p+-junction within a Si0.45Ge0.55 layer [BLA 15, BLA 16], 
whereas in the device shown in Figure 2(c) a Si0.5Ge0.5/Si hetero interface is present at the tunneling 
junction [GLA 17b]. The line tunneling paths are schematically indicated by white arrows in each figure, 
all pointing in the direction perpendicular to the gate. In each concept a potential parasitic tunneling 
path is emphasized by a red arrow, indicating a direction of elevated electric fields (fringing fields) at 
the edge of the tunneling layer. 

4. Results and Discussion 

In the following paragraphs conclusions are drawn on the particularities of switching in L-TFETs. 
The findings of the next section are general and applicable to all transistors shown in Figure 2, but 
exemplary derived from the structure shown in Figure 2(c). In the subsequent sections we also derive 
inferences by comparison of the different tunneling junction designs, regarding source and channel 
doping, as well as crystal defects leading to trap states. 

4.1. Characteristics of L-TFETs 

The significant tunneling paths that contribute to the device current in L-TFETs can be illustrated 
with the help of simulated transfer characteristics and two electron band-to-band tunneling generation 
(eBTBT) plots taken at distinct ௚ܸ as displayed in Figure 3. The plots were acquired from 2D Sentaurus 
TCAD simulations using a non-local BTBT model, where details can be found in [TCAD 14, GLA 17a]. In 
the transfer characteristics in Figure 3(a) for three different gate-source-channel overlap lengths dgs 
(50	nm, 250	nm, 1250	nm) a good agreement between all curves is observed in the early subthreshold 
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devices with the same dimensions, but n-doped channel [Figure 2(c)] (orange lines) much worse 
figures of merit are obtained. In terms of numbers the counter doped devices achieve average SS over 
four decades of ܫௗ down to 87	ܸ݉/݀݁ܿ, while devices with intrinsic channel do not go below 
245	ܸ݉/݀݁ܿ. The mean improvement of ܵܵ௔௩௘ between the two species amounts to a factor of 2.4. 
Additionally, ܫ௢௡ is a factor of 2.5 higher and the ܫ௢௡/ܫ௢௙௙-ratio is improved by more than one order of 
magnitude. The improvement in SS shows a correlation between the onset voltage and average SS as 
shown in Figure 4(b). This correlation suggests that the average SS of devices with intrinsic channel is 
worse, because parasitic tunneling paths set in at much lower ௚ܸ than line tunneling. As stated in the 
previous section, it is of importance to control the onset of parasitic tunneling paths, in this case a 
diagonal tunneling path as shown in Figure 2(c), 3(b). In simulations an onset mismatch leading to 
large average SS as for the devices with intrinsic channel (green symbols) can be triggered by even 
smallest geometric non-idealities on the order of a few nm at the boundary of the source tunneling 
layer [GLA 17a]. These geometric variations and potentially other non-idealities such as traps cause 
enhanced electric fields resulting in stronger band bending in a direction diagonal to the gate, along 
which, a tunneling path develops prematurely. This effect is found to be much more severe for un-
doped channels. For counter doped channels, the initial band banding caused by the dopant atoms is 
much stronger and thus a weaker impact on the band bending is observed making the junction less 
susceptible to the non-idealities faced in experiment. 

 

Figure 4. (a) Comparison of the five best performing devices of three groups of TFETs with counter doping 
(solid lines) and without counter doping (symbols). Upon increasing the source-gate-channel overlap area ݏ݃ܣ 

from 59	݉ߤଶ (orange) to 127	݉ߤଶ (blue) an increase in on-current is observed. The inset shows that ܫ௢௡ scales 
with ݏ݃ܣ. A shift in onset voltage and significant improve in ܵܵ௔௩௘ results from counter doping, as quantified in 

(b). The mean value of ܵܵ௔௩௘ସ	ௗ௘௖. improves by a factor of 2.4. 

4.3. Output characteristics 

Many TFETs show a superlinear onset in the output characteristics like the ones shown in Figure 
5(a) for a device as displayed in Figure 2(a). The superlinear onset may be rooted in a modulation of 
the tunneling probability with ௗܸ or a change in the occupancy of the allowed density of states in the 
source region. As described in ref. [MIC 12] the latter occurs when the quasi Fermi energy in the source 
ி,௦ at high ௚ܸ and ௗܸܧ ൌ 0 is too close to the band edge. In this case most allowed states in the source / 
valence band [Figure 2(a)/5(a)] are occupied. When ௗܸ increases, ܧி,௦ and the band occupancy can be 
altered, and hence more initial states are available for a tunneling event. This may cause an exponential 
increase of the tunneling current at small values in a ௗܸ-sweep. For many applications in analogue and 
digital circuits a linear relation of ܫௗ on ௗܸ is inevitable in order to apply the known rules to the circuit 
design. Consequently, a linear onset needs to be achieved, which is well possible as evidenced by the 
output characteristics in Figure 5(b) on a device corresponding to Figure 2(b). Here the source is 
degenerate and fulfills the condition ܤܥ௦,௠௜௡ ൏ ி,௦ܧ െ 3݇஻ܶ, where ܤܥ௦,௠௜௡ is the conduction band 
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In this sense we see an improvement in minimum SS (ܵܵ௠௜௡) for our L-TFETs by avoiding crystal 
damage and thus bulk traps. Table 1 displays ܵܵ௠௜௡ for all three transistors seen in Figure 2. Due to the 
direct implantation of dopants into the source at the tunneling junction of the device in Figure 2(a), 
severe crystal damage is caused, which cannot be fully recovered by annealing, leaving a significant 
number of defects and thus parasitic energy states in the bandgap. Therefore, ܵܵ௠௜௡ amounts to 
150	ܸ݉/݀݁ܿ, which is double the value achieved for devices corresponding to Figure 2(b) (75	ܸ݉/
݀݁ܿ). As seen in the evaluation of the temperature dependent measurements the latter devices do not 
suffer from TAT severely, allowing for smaller ܵܵ௠௜௡. In these devices the source doping is not 
applied by direct implantation, but rather by implantation into silicide with a subsequent dopant drive 
out. Thereby, defects at the junction can be reduced. Below 60	ܸ݉/݀݁ܿ switching was observed in 
TFETs where the tunneling junction doping profile was created in-situ during growth [Figure 2(c)]. 
Here, the least number of traps is expected which becomes noticeable in ܵܵ௠௜௡ down to 55	ܸ݉/݀݁ܿ.  

 

Figure 6. (a) Temperature dependent transfer characteristics of an LTFET structure as shown in Figure 2(b). 
TAT limits the subthreshold swing, but is an issue only in a small ௚ܸ-range as seen in (b). The sharp transition 

seen here, is the reason for the excellent average SS of 80 mV/dec over 4 orders of ܫௗ at room temperature.  

Doping method 
Implantation 

[Figure 2(a)] 

Implantation 

into Silicide 

[Figure 2(b)] 

In-situ  

[Figure 2(c)] 

SSmin 150 mV/dec 75 mV/dec 55 mV/dec 

Table 1. Minimum SS achieved for tunneling junctions formed by different methods (see Figure 2), especially 

regarding junction doping. Smaller ܵܵ௠௜௡ is observed when trap states are avoided at the tunneling junction, 

achieved by substituting direct ion implantation by implantation into silicide (150 mV/dec → 75 mV/dec) and by 

avoiding ion implantation completely, using in-situ doping instead (75 mV/dec → 55 mV/dec). 

5. Outlook 

Taking the experience from the previous L-TFETs into account a new structure was proposed of 
which a sketch is displayed in Figure 7. The doping of all layers in the stack is incorporated during 
growth to avoid TAT caused by crystal defects created during ion implantation. A high source doping 
of 2 ∙ 10ଶ଴	ܿ݉ିଷ is employed to achieve a linear onset in the output characteristics. The tunneling 
junction uses a SiGe/Si heterostructure and is fabricated in two different variants, with and without 
counter doping to different levels. The concept itself is not limited to the materials shown below, so 
that the use of lower bandgap materials such GeSn and Ge are feasible.  
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Figure 7. Proposed L-TFET design for further experimental investigations. The structure incorporates all the 

elements that were found beneficial in our preceding experiments, such as in-situ doping, counter doping, high 

source doping and SiGe/Si hetero tunneling junction. 

6. Conclusions 

A series of studies on line tunneling FETs was presented and discussed. The common features found 
for all designs are the on-current scaling properties with the gate-source-channel overlap area and the 
occurrence of parasitic tunneling paths at the boundary of the source tunneling layer. The latter issue 
was successfully circumvented by merging the onset of parasitic and line tunneling paths, in addition to 
a reduction of the susceptibility to fringing fields at the source edges, through the use of counter 
doping. As a result, ܵܵ	 ൌ 	87	ܸ݉/݀݁ܿ for n-TFETs and ܵܵ	 ൌ 	80	ܸ݉/݀݁ܿ for p-TFETs averaged 
over four orders of magnitude of Id were achieved. Moreover, counter doping enhances the tunneling 
probability making on-currents on the order of 10	݉ߤ/ܣߤ accessible. From the analysis of thermal 
activation energies BTBT was shown to dominate the on-state of the TFET, while TAT only plays a 
role in a small range of the subthreshold regime. A clear improvement of SSmin was observed through 
preventing TAT by moving from direct implantation into the source, to using implantation into silicide 
and ultimately to in-situ doping, where subthermal switching was observed. Moreover, we elucidated 
the suppression of the superlinear onset in the output characteristics of TFETs by choosing a 
sufficiently high source doping. As a result of these experiments a TFET design combining the 
beneficial elements of the investigated devices with high flexibility was proposed and described. 

This research received partial funding from the EU FP7 project E2SWITCH (619509) and the 
BMBF project UltraLowPow (16ES0060K).  
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