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RÉSUMÉ. Cette étude est consacrée à l’étude du dessin de l’Homme de Vitruve de Léonard de Vinci, ce qui nous permet 

de dévoiler la géométrie sous-jacente à la construction dudit homme, défi antique lancé par l’architecte romain, Marcus 

Vitruvius Pollio, dans son ouvrage De architectura. Notre étude vise à comprendre la genèse de cette œuvre, son 

élaboration progressive et la manière dont Léonard a su élucider un problème resté sans réponse durant des siècles. 

L’analyse met également en lumière le rôle fondateur des mathématiques érigées depuis les premières civilisations en 

langage commun de la connaissance et de la perfection. Considérées, depuis toujours, comme un moyen de percer les 

secrets de l’univers, leur usage dans ce dessin emblématique, révèle l’esprit scientifique de Léonard animé par la recherche 

d’une harmonie universelle.  

ABSTRACT. This study aims to understand the construction by Leonardo da Vinci of the Vitruvian Man, which represents 

the graphic resolution of an ancient challenge set by the Roman architect Marcus Vitruvius Pollio in his treatise De 

Architectura. It seeks to explain the genesis of this work, its progressive elaboration, and the way in which Leonardo 

succeeded in addressing a problem that had remained unanswered for centuries. The analysis also highlights the seminal 

role of mathematics, which since the earliest civilizations has been regarded as a universal language of knowledge and 

perfection. Long considered to unlock the secrets of the universe, its use in this emblematic drawing reveals Leonardo’s 

scientific spirit, driven by the pursuit of universal harmony. 
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1. La chaîne du savoir, de l’Orient antique à la Renaissance 

1.1. Les berceaux de la connaissance  

Depuis toujours, les hommes se sont interrogés sur l’origine du monde et sur l’ordre qui le régit. Les 

premiers récits furent mythiques. Ils mettaient en scène des dieux qui incarnaient les forces de la nature. 

Mais à côté de ces récits sacrés, peu à peu, se sont formés des savoirs fondés sur l’observation, le calcul 

et l’expérience. Cette nouvelle quête guidée par la raison, inaugura une nouvelle manière de comprendre 

le monde et elle allait traverser toute l’histoire de l’humanité, de la Mésopotamie à l’Égypte, de la Perse 

à l’Inde et à la Chine, puis de la Grèce à Rome et de l’Orient à l’Occident médiéval.   

Ainsi s’est tissée, à travers le temps, une véritable chaîne du savoir, où chaque civilisation assimile, 

transforme et enrichit l’héritage de la précédente. Au fil des siècles, l’Orient antique, la Grèce et Rome 

ont transmis à la Renaissance un corpus de connaissances qui allait trouver en Léonard de Vinci un 

héritier exceptionnel. C’est pourquoi, pour comprendre le dessin de l’Homme de Vitruve et l’œuvre 

scientifique de Léonard, il faut d’abord retracer cette généalogie intellectuelle. Il convient donc de 

revenir aux sources les plus anciennes, en Mésopotamie et en Égypte, là où naquirent les premiers savoirs 

du ciel, des nombres et des proportions. 
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L’une des toutes premières civilisations savantes fut la Mésopotamie, berceau des Sumériens et des 

Babyloniens. Dès le deuxième millénaire avant notre ère, les prêtres-astronomes observaient le ciel nuit 

après nuit. Pour eux, scruter les astres revenait à interpréter la volonté des dieux, Vénus était Ishtar, 

Jupiter Marduk, la Lune Sîn1. Leurs observations furent consignées sur des tablettes d’argile, comme en 

témoignent les archives retrouvées à Uruk et à Babylone2. Ces relevés permettaient non seulement de 

prévoir certains phénomènes célestes, comme les éclipses, mais aussi de réguler la vie agricole qui 

dépendait directement des cycles célestes. L’astronomie était ainsi indissociable de l’organisation de la 

cité. 

Ces tablettes donnèrent naissance aux éphémérides babyloniennes3, de véritables journaux du ciel qui, 

jour après jour, consignaient les phénomènes observés. Ces journaux servirent de base aux calculs et aux 

prévisions. Un tel suivi a pu être rendu possible grâce à l’adoption du système sexagésimal4. 

Contrairement à notre système décimal, fondé sur des paquets de dix (unités, dizaines, centaines), les 

mésopotamiens raisonnaient en paquets de soixante. Ce choix simplifiait les calculs de fractions et de 

proportions. L’héritage en subsiste aujourd’hui dans la division du temps (60 minutes, 60 secondes) et 

de l’espace (360 degrés pour le cercle). 

Ce système numérique permit aux scribes de développer une culture mathématique avancée. Ils 

établirent des tables numériques, surent calculer des racines carrées et résoudre des équations simples. 

Ces savoirs constituaient une véritable science des nombres. Ainsi, la Mésopotamie apparaît comme la 

matrice d’une démarche intellectuelle qui allait marquer toute l’histoire. Derrière les dieux et les mythes, 

c’est bien par les nombres que l’homme commença à comprendre l’ordre de la création. 

Au Moyen-Orient, entre 2000 et 1700 av. J.-C., puis durant le Nouvel Empire de 1550 à 1070 av. J.-

C., une même volonté de déchiffrer les lois de la nature se manifestait dans la vallée du Nil. Héritière en 

partie des traditions mésopotamiennes venues par le Proche-Orient, mais aussi des cultures africaines 

plus anciennes issues du cours du fleuve et des régions subsahariennes, l’Égypte élabora ses propres 

observations et expérimentations.  

Dans ce vaste entrelacs naquit une pensée où la marche des astres et le rythme du fleuve formaient un 

langage, garant de l’ordre du monde5. Comme en Mésopotamie, Les grandes forces de l’univers étaient 

incarnées par des dieux. Les crues régulières du Nil, synonymes de fertilité, étaient perçues comme une 

bénédiction. À l’inverse, une inondation trop faible ou trop forte, une sécheresse ou une famine pouvaient 

être interprétées comme une punition divine6. Mais peu à peu, les Égyptiens comprirent que les 

perturbations climatiques et agricoles, qu’ils interprétaient comme les gestes des dieux, n’étaient en 

réalité que des phénomènes réguliers qu’il fallait observer de près pour maintenir l’équilibre de la vie. 

Ainsi, c’est en observant l’étoile Sothis (Sirius) que les égyptiens découvrirent que son lever héliaque, 

c’est-à-dire le moment où elle redevenait visible à l’aube après une période d’invisibilité, coïncidait avec 

le début de la crue du Nil7. Ce repère astronomique marquait le début de l’année et permit aux Égyptiens 

de mettre au point le premier calendrier solaire de 365 jours8.  

 Les prêtres-mathématiciens d’Égypte avaient aussi développé une géométrie et une arithmétique 

avancées, comme en témoigne le papyrus Rhind (vers 1650 av. J.-C.), rédigé par le scribe Ahmès9. Ainsi, 

à l’image de la Mésopotamie, les égyptiens transformèrent une lecture religieuse en un savoir 

mathématique et astronomique, avec la conviction que l’univers, pour être compris et maîtrisé, devait 

être mesuré.  

1.2. L’antiquité grecque et la pensée rationnelle  

Depuis des millénaires, les égyptiens, les mésopotamiens et les perses avaient accumulé des savoirs 

sur le ciel, les nombres et les proportions. À cela s’ajoutent aussi les traditions indiennes et chinoises. 

En Inde, les Śulbasūtras (vers 800-500 av. J.-C.) contiennent déjà des énoncés géométriques proches du 

théorème de Pythagore, tandis qu’en Chine, le Zhou Bi Suan Jing (IIIᵉ siècle av. J.-C.) témoigne de 

calculs astronomiques et géométriques avancés10. Ces connaissances, qui circulaient par les routes 

commerciales, les voyages et les conquêtes, ont constitué un patrimoine commun. 
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C’est de ce fond universel que s’est nourrie la Grèce antique, qui transforma une partie de ces pratiques 

en une véritable science rationnelle. Héritière de l’observation orientale, elle ne se contenta plus de 

prévoir et de mesurer les phénomènes célestes, mais chercha à en comprendre les causes et à les 

démontrer par le raisonnement. 

Ainsi commence avec Thalès de Milet (vers 624-546 av. J.-C.) la première grande étape de la pensée 

rationnelle en Occident. Considéré par Aristote (384-322 av. J.-C.) comme l’un des premiers 

physiciens11, Thalès incarne la transition entre les savoirs orientaux et la philosophie grecque. D’après 

l’historien grec, Hérodote12, il aurait voyagé en Égypte, où il reçut l’enseignement des prêtres sur l’art 

de mesurer la terre et d’observer les astres. Ce séjour est également mentionné par l’historien et 

biographe, Diogène Laërce13, qui rapporte que Thalès revint de son voyage avec des méthodes nouvelles 

de calcul et d’observation. La tradition veut qu’il ait mesuré la hauteur des pyramides en utilisant leur 

ombre. Il attendit que la sienne égalât sa taille, et en déduisit par proportion celle de la pyramide. Ce 

procédé, fondé sur la similitude des triangles, devint l’un des principes majeurs de la géométrie. Thalès 

apparaît ainsi comme le premier à avoir montré que l’on pouvait mesurer l’intangible grâce au 

raisonnement mathématique. 

Plusieurs siècles plus tard, Léonard de Vinci (1452-1519) reprit cette logique dans ses études sur la 

lumière (figure 1). Il représenta par un grand arc, une surface lumineuse, et trois cônes placés en dessous 

qui figurent un objet de face, et deux objets placés sur les côtés. Les rayons issus des bords de l’arc 

délimitent la partie lumineuse. Ce sont des triangles semblables représentant les objets latéraux, qui 

permettent de comparer la quantité de lumière reçue selon la position. Ainsi Léonard mesura la lumière 

avec la même logique géométrique que Thalès.  

 

Figure 1. Étude sur la théorie de la lumière et des ombres 

Manuscrit A, Institut de France 

De Vinci 

Pour Léonard, la géométrie constituait l’outil principal pour la compréhension des phénomènes et 

orientait la conduite de toutes ses recherches. Dans ses études anatomiques, il décomposait les formes 

vivantes en réseaux de triangles. Cette grille géométrique appliquée dans sa quête de l’homme et du 

cheval idéaux, lui permit de comparer et de comprendre les rapports de proportion qui gouvernent leurs 

mesures (figures 2). Dans les deux cas, la méthode employée repose sur un principe qui témoigne de 

l’influence de Thalès et de la volonté de Léonard d’étudier le vivant grâce à un langage géométrique 

universel. 
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Étude de proportions équines 

RCIN 912318, Codex Windsor 

 

Étude de proportions humaines 

RCIN 912607, Codex Windsor 

Figures 2  

Parmi les héritiers de la tradition orientale et grecque, Pythagore de Samos (vers 570-vers 495 av. J.-

C.), philosophe, mathématicien et fondateur d’une communauté spirituelle, fut l’une des figures les plus 

influentes de l’Antiquité. Les philosophes Jamblique14 et Porphyre15 ( IIIème et IVème siècle) rapportèrent 

qu’il voyagea en Égypte et en Babylonie, où il entra en contact avec les prêtres égyptiens et les chaldéens, 

héritiers de longues traditions astronomiques et mathématiques.  Il fut initié en Égypte aux pratiques 

sacerdotales et aux savoirs géométriques, et aurait également reçu l’enseignement des mages perses. 

Au cœur de sa pensée se trouve l’idée que les nombres et les rapports numériques expriment la 

structure profonde du monde. Pour Pythagore, tout phénomène peut être décrit à travers des relations de 

proportionnalité. Cette conception trouve une illustration dans le théorème de Pythagore, selon lequel, 

dans un triangle rectangle, la somme des carrés des deux côtés adjacents à l’angle droit est égale au carré 

de l’hypothénuse. La même logique se manifeste dans la découverte des proportions musicales, l’octave 

(2:1), la quinte (3:2), et la quarte (4:3), qui montrent que les intervalles les plus harmonieux à l’oreille 

obéissent eux aussi à des rapports simples des longueurs des cordes vibrantes. Ainsi, pour les 

pythagoriciens, les mathématiques représentaient un langage divin, capable de révéler l’ordre caché du 

cosmos16.  

Cet héritage parvint à Léonard qui reprit explicitement l’analogie entre la musique et la géométrie17. 

Sur plusieurs pages de ses carnets, se trouvent des études de tuyaux d’orgue, de cordes vibrantes et de 

systèmes mécaniques destinés à produire des séquences régulières (figure 3). ll compara la vibration des 

cordes et la production sonore à des rapports numériques. Il observa que la hauteur du son varie selon la 

longueur et la tension de la corde, confirmant ainsi de manière expérimentale, les principes de 

proportionnalités déjà énoncés par Pythagore.  
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Figure 3. Études musicales 

Codex Arundel, f.133v, f.133r 

De Vinci 

De même, Léonard utilisa le triangle rectangle, comme un outil universel, capable de ramener 

l’ensemble des phénomènes naturels à des rapports mesurables. Cette démarche est particulièrement 

évidente dans ses recherches sur l’optique.  

Dans une étude sur la propagation de la lumière, Léonard dessina un faisceau lumineux, sous la forme 

d’un cône (figures 4). Il représenta des rayons provenant d’un astre, qui en passant par un petit orifice 

forment derrière ce trou un faisceau lumineux. À partir de ce point, ces rayons se déploient en divisant 

le faisceau en six triangles rectangles successsifs. Cette division en six secteurs s’inscrit dans la tradition 

héritée du système sexagéminal4, utilisé dans l’astronomie et l’optique médiévales. Et comme la 

construction repose sur des triangles rectangles, Léonard fixa naturellement l’angle d’ouverture du 

faisceau à 90°, c’est-à-dire un quart du cercle. 

  

Figures 4. Étude sur l’optique, la propagation de la lumière, Codex Arundel I, De Vinci 

Pour décrire géométriquement cette construction, on note d la distance entre le trou et le centre de la 

surface circulaire qui sert de repère spatial pour permettre de visualiser et mesurer l’ouverture du cône 

lumineux. On désigne par hn la hauteur du niveau et par cn la longueur oblique du rayon lumineux 

correspond à ce niveau. La distance d est égale à la premiere hauteur h0.  
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Chaque niveau du faisceau possède ainsi son propre rayon oblique, qui constitue l’hypoténuse du 

triangle rectangle formé avec d et hn. La configuration obéit alors au théorème de Pythagore. 

hn² + d² = cn²  

 

D’un niveau au suivant, la hauteur hn  augmente d’une valeur constante, tandis que la longueur oblique 

cn croit de moins en moins vite. Plus la taille des triangles rectangles augmente, plus la distance des 

rayons lumineux se resserre. Cette décroissance des rapports cn+1/cn est due à la fonction cn= √(d2+h2
n), 

qui est croissante est concave. Ainsi, lorsque hn augmente d’une quantité constante, les incréments cn+1-

cn deviennent progressivement plus faibles, ce qui est caractérisitque d’une courbure concave.    

Cette géométrie interne traduit un phénomène physique que Léonard énonça dans plusieurs 

manuscrits. Dans le Codex Atlanticus, f.337 r. il nota : 

« La luce si indebolisce secondo la distanza. » 

« La lumière s’affaiblit en fonction de la distance. » 

u folio 126r. de ce même manuscrit : 

« Ogni cosa veduta da lunga distanza perde di vigore e di chiarezza. » 

« Toute chose vue de loin perd de vigueur et de clarté. » 

Et dans le manuscrit A, f. 17 v., de l’Institut de France : 

« La luce si diminusce quanto più si allontana dalla sua origine. » 

« La lumière diminue à mesure qu’elle s’éloigne de son origine. » 

Ainsi les rayons cn, de plus en plus longs, transportent une lumière progressivement afaiblie, ce qui 

renforce visuellement l’effet de resserrement observé dans le faisceau.  

Pour rendre visible ce mécanisme naturel, Léonard construisit une véritable grille géométrique à 

l’intérieur du faisceau lumineux. Il commença par découper, en deux, le premier triangle rectangle. Il 

traça un segment à partir du centre du cercle jusqu’au milieu de l’hypoténuse, perpendiculaire à hn. 

Depuis le milieu de l’hypoténuse, il traça un segment L1, jusqu’au plus grand segment cn, l’hypoténuse 

du cône, de telle sorte que que les rayons lumineux soient divisés en deux parties égales. 

À chaque niveau hn, un segment analogue à Ln, est tracé jusqu’au plus grand rayon lumineux cn. Ces 

transversales découpent alors chaque rayon en un nombre croissant de parties égales, deux pour le 

premier, trois pour le second, quatre pour le troisième, et ainsi de suite, jusqu’à 7.  

Cette subdivision régulière fait apparaître une progression concave sur chaque rayon lumineux. Les 

points d’intersections successifs correspondent aux fractions : 1/2, 2/3, 3/4, 4/5, 5/6, 6/7. Chacune de ces 

valeurs est plus grande que la précédente, mais selon des incréments qui diminuent régulièrement. C’est 

la signature d’une croissance concave, parfaitement comprise par Léonard.  

Pour achever sa construction, Léonard projetta, depuis le centre du cercle, des segments (voir flèche 

verte, sur la figure 4) jusqu’au segment parralèle à d,  à l’endroit où se croisent les hypoténuses des 

triangles rectangles. Les points d’intersections de ces segments sur le cercle furent ensuite reliés par des 

segments jusqu’au trou (voir flèche rouge, sur la figure 4). Enfin, à partir de ces mêmes points 

d’intersection, il traça des segments jusqu’au sommet hn  de chaque triangle rectangle (flèche noire, sur 

la figure 4). Ces projections permettent de visualiser comment les angles se resserrent et comment la 

lumière s’affaiblit dans le faisceau. 
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Ainsi, par l’application du théorème de Pythagore, Léonard chercha à comprendre le comportement 

de la lumière, en observant les variations successives des rayons. Cette étude fondée sur la concavité de 

la fonction √(d2+h2
n), constitue une anticipation remarquable du calcul différentiel, bien avant sa 

formalisation par Newton et Leibniz, au XVIIème siècle18.  

À la même époque, tandis que certains philosophes exploraient les nombres et les figures pour 

déchiffrer les mystères de la création, le domaine de la médecine traçait une nouvelle voie du savoir 

tournée vers la compréhension du corps humain. Hippocrate (vers 460-370 av. J.-C.), surnommé « père 

de la médecine », rompit avec les explications religieuses de la maladie et affirma que le corps obéit aux 

mêmes lois que la nature19. La santé n’était pas un don des dieux, mais le résultat d’un équilibre fragile. 

Cette idée s’enracinait dans un héritage plus ancien. En Égypte déjà et en Perse, la vie était perçue 

comme un jeu d’équilibre entre les quatre éléments de la nature. Empédocle d’Agrigente (vers 490-430 

av. J.-C.) en donna une première formulation philosophique en associant l’air, l’eau, le feu et la terre, à 

la naissance et à la transformation des êtres20. Hippocrate formula cette conception de l’équilibre naturel 

dans sa célèbre théorie des quatre humeurs, selon laquelle le corps humain est composé de quatre 

substances fondamentales, le sang, la bile jaune, la bile noire et le phlegme. Chacune d’elles correspond 

à un élément de la nature, l’air, le feu, la terre et l’eau, et se définit par une qualité essentielle, chaud, 

froid, sec ou humide. Le sang, associé à l’air et caractérisé par la chaleur et l’humidité, symbolise la 

vitalité et la joie, en proportion harmonieuse, il rend le tempérament vif et généreux, mais en excès, il 

provoque l’agitation et l’instabilité. La bile jaune, liée au feu, chaude et sèche, représente la force 

d’action et le courage, équilibrée, elle nourrit la détermination, mais trop abondante, elle engendre la 

colère et l’irritabilité, d’où l’expression « se faire de la bile ». La bile noire, rattachée à la terre, froide et 

sèche, évoque la profondeur de l’esprit et la sensibilité, lorsqu’elle domine, elle plonge l’individu dans 

la mélancolie et la tristesse, mot d’ailleurs issu du grec « melaina chole », signifiant « bile noire ». Quant 

au phlegme, associé à l’eau, froid et humide, il incarne la stabilité et le calme intérieur, bien dosé, il 

permet de garder son sang-froid, mais lorsqu’il s’accumule, il provoque lenteur et inertie, ce qui a donné 

l’expression « garder son flegme ». Ainsi, dans la pensée d’Hippocrate, la santé du corps dépendait de 

l’équilibre harmonieux de ces quatre humeurs, reflet de l’harmonie même de la nature21. La maladie 

apparaissait lorsque l’une d’elles devenait excessive ou insuffisante. Ainsi, de même que le monde vit 

de l’équilibre entre les éléments, l’homme vit de l’équilibre entre ses humeurs. Cette doctrine, fondée 

sur l’observation et l’expérience, fit de la médecine une science empirique, attentive aux symptômes et 

à l’évolution des maladies22. 

Cette vision fut prolongée par Galien de Pergame (129 – vers 201 apr. J.-C.), médecin grec au service 

de l’Empire romain. Admirateur d’Hippocrate, il systématisa la théorie des humeurs dans une véritable 

anatomie fonctionnelle, en s’appuyant sur des dissections animales. Son autorité resta incontestée 

pendant plus d’un millénaire. Les écoles de médecine médiévale et renaissante enseignaient avant tout 

Galien, dont les traités furent traduits en latin et en arabe23. Mais faute d’autopsie humaine systématique, 

il conserva des erreurs anatomiques majeures. C’est précisément ce savoir figé que Léonard, des siècles 

plus tard, allait contester par l’expérience directe. 

Léonard commença à s’intéresser à l’anatomie dès les années 1480 à Florence, où il dessinait d’après 

des modèles vivants. Toutefois, sa véritable campagne de dissection ne débuta qu’entre 1506 et 1513. 

Durant l’hiver 1507-1508, à l’hôpital Santa Maria Nuova de Florence, il pratiqua l’autopsie d’un vieillard 

centenaire mort « sans douleur »24. Dans ses feuillets, aujourd’hui conservés à Windsor, il consigna des 

observations pathologiques inédites sur les vaisseaux du cerveau et du cœur. 

Il partageait avec les penseurs de l’Antiquité, notamment Hippocrate, la conviction que l’homme est 

un microcosme. Dans sa pensée, qu’il exprima dans le Codex Atlanticus, f 80r., l’être humain et le monde 

ne sont que deux expressions d’une même organisation, gouvernés par des lois universelles : 

«L’omo è detto da’ antichi mondo minore; e certo questa denominazione è ben data, perché, come il 

corpo della terra è composto d’acqua, d’aria, di terra e di fuoco, così questo corpo dell’omo è fatto di 
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queste medesime cose. E come l’omo ha in sé ossa che sostengono la carne, e la terra ha le rupi che 

sostengono la terra, come nell’omo le vene e i fiumi, così nel mondo; come nell’omo il sangue, così nel 

corpo della terra l’acqua, e come nell’omo il polso e il batter del cuore, così la terra ha il flusso e 

reflusso del mare.» 

« L’homme est appelé par les anciens un monde mineur, et cette appellation est très juste, car, tout 

comme le corps terrestre est composé de terre, d’eau, d’air et de feu, de même le corps humain est formé 

de ces mêmes éléments. L’homme a en lui des os qui sont comme les rochers, une chair qui est comme 

la terre, les veines et les rivières, le sang qui est comme la mer, et la respiration qui est comme le flux et 

reflux de l’océan. Ainsi, pour tout le reste, l’homme et le monde sont semblables. »  

Dans ses notes tardives sur l’anatomie, conservées dans le Codex Atlanticus, Léonard élargit encore 

cette conception. Inspiré par la vision cosmographique de Ptolémée, il concevait le corps humain comme 

un petit monde (minor mondo), organisé selon les mêmes principes que l’univers. Il en fit mention sur 

le folio 327 r: 

«Adunque qui con quindici figure intere ti sarà mostrata la cosmografia del minor mondo col 

medesimo ordine che innanzi a me fu fatto da Tolomeo nella sua cosmografia, e così dividerò poi quelli 

in membra, come lui divise il tutto in provincie.» 

« Ainsi, avec quinze figures complètes, te sera montrée la cosmographie du petit monde selon le même 

ordre que celui que Ptolémée adopta avant moi dans sa Cosmographia ; et je diviserai ensuite le corps 

en membres, comme lui divisa le tout en provinces. » 

Léonard reprit également la pensée d’Hippocrate et de Galien selon laquelle la santé du corps dépend 

de l’harmonie des quatre humeurs. Il s’inscrit ainsi dans la continuité de la tradition antique, tout en la 

renouvelant par l’observation directe et l’expérimentation. Ses recherches relevaient d’une conception 

unifiée du vivant, où les phénomènes physiologiques, la circulation du sang, la chaleur interne et la 

respiration, sont ordonnés selon un principe d’organisation supérieur. Léonard considérait que l’âme agit 

à travers les quatre humeurs, qui assurent l’équilibre et la cohésion du corps.  Pour Léonard, elle est le 

siège des émotions et du sentiment intérieur. C’est d’ailleurs de cette conception ancienne que 

proviennent encore nos expressions telles que « avoir mal à l’âme » ou « le vague à l’âme », qui traduisent 

l’unité profonde entre le corps et l’esprit. Cette pensée s’incarne dans une citation du Codex Atlanticus, 

f.198r. : 

«I movimenti dell’anima sono le cause delle varie complessioni degli uomini.» 

« Les mouvements de l’âme sont la cause des différentes humeurs. » 

Ainsi, les dissections de Léonard, au-delà d’une description anatomique du corps humain, visaient 

aussi à comprendre cette organisation invisible, et les relations dynamiques qui unissent la vie matérielle, 

la pensée et le principe divin qui les ordonne. 

Par la suite, Léonard multiplia les dissections dans divers contextes hospitaliers et académiques, à 

Florence, puis à Milan (probablement à l’Ospedale Maggiore), et enfin à Rome, à l’hôpital de Santo 

Spirito in Sassia, où des accusations de sacrilège mirent fin à ses travaux25. Ses notes méthodiques 

témoignent d’une approche rigoureusement scientifique, avant l’heure. Dans le manuscrit A, conservé à 

l’Institut de France, il décrivit en détail sa méthode de travail. Il expliqua avoir ouvert plus de dix corps 

humains, procédant « couche par couche », retirant successivement la chair, les tissus et le sang pour 

révéler les veines, jusqu’aux plus fines ramifications capillaires (figures 5). Un seul corps ne lui suffisait 

pas, il répétait sans cesse l’opération afin d’atteindre une connaissance aussi exacte que possible. 
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Les os et les muscles de l’épaule 

 

L’anatomie superficielle de l’épaule et du cou 

RCIN 919001, De Vinci 

Figures 5 

Vers 1510-1511, il collabora à Pavie avec le médecin Marcantonio della Torre, jeune professeur 

d’anatomie formé à Padoue. Ensemble, ils projetèrent de composer un grand atlas anatomique illustré, 

mais la mort prématurée de della Torre interrompit cette entreprise26. Ce projet avorté ne mit pourtant 

pas fin à la curiosité insatiable de Léonard. Ses carnets témoignent d’un esprit visionnaire, animé par 

une quête constante de compréhension des lois du vivant. 

Après Hippocrate, Platon (427–347 av. J.-C.), disciple de Socrate et fondateur de l’académie 

d’Athènes, hérita des intuitions pythagoriciennes et des traditions d’Empédocle et d’Hippocrate, qui 

avaient pensé le monde à partir des quatre éléments fondamentaux (feu, air, eau et terre). Dans le Timée 

(53c–56c)27, il leur donna une forme géométrique, le tétraèdre pour le feu, l’octaèdre pour l’air, 

l’icosaèdre pour l’eau et le cube pour la terre. À ces quatre solides, il en ajouta un cinquième, le 

dodécaèdre, qu’il associa à l’univers dans son ensemble (figures 6). Ce dernier rassemblait les quatre 

autres et les unissait en une totalité supérieure. Le dodécaèdre devint ainsi la figure de l’Un, principe 

premier d’où provenait toute chose. Platon voyait dans ces formes parfaites le reflet de l’ordre rationnel 

du cosmos, car il pensait que l’univers avait été conçu géométriquement par le Démiurge (l’artisan divin 

qui façonne le monde matériel à partir des formes éternelles). À l’entrée de son école, on pouvait 

d’ailleurs lire la célèbre devise : « Nul n’entre ici s’il n’est géomètre28 », affirmation du rôle central de 

la géométrie dans la formation de l’esprit et dans la compréhension du réel. 

À la fin du XVème siècle, Léonard de Vinci réalisa les illustrations du traité de son ami, le moine 

mathématicien, Luca Pacioli, dans son ouvrage De Divina Proportione (1496–1498), publié en 150929, 

consacré à l’idée qu’une certaine proportion universelle présente dans l’univers se retrouve dans le corps 

humain. Léonard étudia les polyèdres réguliers et semi-réguliers de Platon, en version pleine et 

transparente (figures 6). Parmi eux, le dodécaèdre occupa dans ses recherches une place singulière, car 

il concentre en lui des rapports harmoniques. En effet, dans un dodécaèdre régulier, chaque face est un 

pentagone, et dans ce dernier, le rapport entre la diagonale et le côté est celui d’une proportion idéale, le 

nombre d’or (≈1,618). Ainsi, ce rapport se retrouve à toutes les échelles de la figure. Les grecs 

reconnaissaient dans le dodécaèdre, l’empreinte géométrique d’une intelligence ordonnatrice du monde, 

celle du Démiurge30. À l’instar de Platon, Léonard voyait dans les mathématiques le fondement 

nécessaire à toute connaissance véritable. Dès l’introduction de son Traité de la peinture, il réaffirme 

cette idée par un avertissement : « Que nul ne me lise s’il n’est mathématicien »31.  

À cette époque, comme à la Renaissance, la philosophie n’était pas séparée des mathématiques. Le 

philosophe était aussi géomètre, car comprendre le monde supposait de connaître ses rapports, ses 

proportions et ses mesures. La pensée rationnelle, la science et la contemplation formaient un seul et 

même chemin vers la vérité. C’est pourquoi les sages de l’Antiquité concevaient la connaissance du 
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nombre comme une voie d’accès au divin. Peu à peu, ce domaine s’éloigna de la science dont il fut 

l’origine, pour s’attacher davantage à la logique, à l’éthique, au langage, et à la conscience. 

 

Les cinq polyèdres, Manuscrit M, f 80v., Institut de France 

De Vinci 

 

Dodécaèdre, Codex atlanticus F.707 r. 

Da Vinci 

 

Icosaèdre,Codex Atlanticus F.518 r. 

Da Vinci 

Figures 6 

Après Platon et sa vision d’un cosmos ordonné par l’unité et la géométrie, son disciple Aristote (384 

– 322 av. J.-C.) marqua un tournant dans l’histoire de la pensée. Là où Platon cherchait la vérité dans le 

monde des Idées, c’est-à-dire dans une réalité intelligible, Aristote affirma qu’elle devait d’abord se 

trouver dans l’expérience sensible, celle de l’observation et de l’étude des phénomènes accessibles aux 

sens32. Philosophe encyclopédique, il s’intéressa à tous les domaines du savoir. Sa méthode reposait sur 

la conviction que la connaissance naît de l’observation et de l’expérience, mais elle doit ensuite s’élever 

vers des principes universels. 

Léonard de Vinci a souvent été comparé à Platon, en raison de sa quête d’harmonie et d’unité du 

monde, thèmes centraux de la philosophie platonicienne. Cette comparaison apparaît légitime car 

Léonard s’inscrit dans la culture humaniste de la Renaissance, qui redécouvrit Platon et ses formes 

idéales avec la même conviction que l’âme transcende le corps. Platon, dans le Phédon33, soutenait que 

le corps n’est qu’un tombeau qui emprisonne, et que seule l’âme conduit à la vérité. Léonard, plusieurs 

siècles plus tard, prolongea cette idée en écrivant dans le Codex Windsor (Anatomical Manuscript A, 

fol. 2r) :  

«E tu, o omo, che consideri in questa mia fatica l’opere mirabili della natura, se giudicherai essere 

cosa nefanda il distruggerla, or pensa essere cosa nefandissima il tôrre la vita all’omo; del quale, se 

questa sua composizione ti pare di maraviglioso artifizio, pensa questa essere nulla rispetto all’anima 
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che in tale architettura abita; e veramente, quale essa si sia, ella è cosa divina: sicché lasciala abitare 

nella sua opera a suo beneplacito…»   

« Et toi, ô homme, qui contemple dans ce travail à quel point les œuvres de la nature sont admirables, 

si tu juges qu’il est chose abominable de les détruire, songe qu’il est infiniment plus abominable d’ôter 

la vie à un homme ; car si cette composition extérieure te paraît d’un art merveilleux, pense qu’elle n’est 

rien en comparaison de l’âme qui habite une telle architecture. Et en vérité, quelle qu’elle soit, cette 

âme est chose divine ; laisse-la donc demeurer dans son œuvre selon son bon plaisir… » 

Toutefois, si Léonard partageait avec Platon cette quête de transcendance et d’unité, sa méthode de 

recherche le rapproche davantage d’Aristote qu’il cita à plusieurs reprises dans ses carnets, tantôt pour 

l’approuver, tantôt pour le contredire. Dans ses notes, il se référa explicitement au philosophe en 

discutant des éléments de la nature et du mouvement. Cette présence constante montre qu’Aristote fut 

pour lui une véritable autorité de référence.  

Léonard partageait avec Aristote l’importance accordée à l’expérience directe comme fondement du 

savoir. Dans une démarche épistémologique, il ne se contentait pas de répéter ce qu’il lisait dans les 

livres, il vérifiait, expérimentait et confrontait sans cesse les savoirs reçus à l’épreuve de l’expérience. 

D’ailleurs, dans ses écrits, il critiqua vivement ceux qui se bornaient à répéter les autorités anciennes 

sans vérifier par eux-mêmes. Cette méfiance envers la spéculation abstraite et cette exigence de 

vérification par l’observation rejoignent directement la méthode aristotélicienne.  

Il écrivit, dans le Manuscrit G de l’Institut de France, fol. 8r:  

«Quelli, che s’innamoran di pratica sanza scienza, son come ’l nocchiere, ch’entra in navilio sanza 

timone o bussola, che mai ha certezza dove si vada. Sempre la pratica dev’esser edificata sopra la bona 

teorica; della quale la prospettiva è guida e porta, e, sanza questa, nulla si fa bene.» 

« Ceux qui s’éprennent de la pratique sans la science sont comme le pilote qui entre dans un navire 

sans gouvernail ni boussole, et qui n’a jamais la certitude de la direction qu’il prend. La pratique doit 

toujours être fondée sur une bonne théorie, dont la perspective est le guide et la porte, sans celle-ci, rien 

ne se fait bien » 

Il ajouta, dans le Codex Atlanticus, folio 76 recto :  

«Chi disputa allegando l’autorità, non adopra(lo) ’ngegno, ma più tosto la memoria.» 

« Celui qui, en disputant, invoque l’autorité n’emploie pas son intelligence, mais plutôt sa mémoire. » 

Comme Aristote, Léonard consacra des centaines de pages à la biologie, à l’étude des animaux et du 

corps humain. Son ambition était la même que celle du philosophe grec, transformer l’observation 

empirique en science rationnelle. Qu’il s’agisse du vol des oiseaux, du cheval ou de l’homme, Léonard 

suivit une démarche rigoureusement fondée sur l’observation, la description et la comparaison.  

Léonard compara le squelette humain et le squelette équin, en particulier au niveau des jambes et de 

leurs proportions. Cette analogie prolonge directement l’affirmation d’Aristote selon laquelle les jambes 

du cheval sont semblables à celles de l’homme34 (figure 7). En observateur attentif, Léonard reprit, 

vérifia et confirma par le dessin cette intuition antique. 



© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                                               Page | 12 

 

Figure 7. RCIN 912625, Royal Collection Trust 

Codex Windsor, De Vinci 

Sa curiosité scientifique se nourrissait aussi de ses lectures. Léonard possédait dans sa bibliothèque35, 

l’Historia Naturalis de Pline l’Ancien (23-79 après J.C.), une véritable encyclopédie du monde naturel, 

qu’il considérait comme un ouvrage de référence. Il y trouva matière à approfondir sa connaissance des 

minéraux, des plantes, des animaux et du corps humain. 

Après Aristote, Euclide (vers 325 – 265 av. J.-C.) apporta une nouvelle forme de rigueur et de clarté 

qui marquera toute l’histoire des sciences. Mathématicien actif à Alexandrie, probablement sous le règne 

de Ptolémée Ier Sôter (367 – 283 av. J.-C.), Euclide composa les Éléments36, un traité monumental en 

treize livres qui rassemble, organise et systématise l’ensemble du savoir géométrique de son temps. 

Euclide hérita de Thalès, de Pythagore, de Platon et d’Aristote, mais aussi des savoirs plus anciens 

venus d’Égypte et de Babylonie. Toutefois, il leur donna une forme nouvelle, fondée sur des définitions 

claires, des axiomes simples et une succession de démonstrations. Chaque théorème découla 

logiquement du précédent, comme les maillons d’une chaîne parfaite. Cette méthode déductive, d’une 

rigueur inédite, fera autorité pendant plus de deux millénaires. 

Ce qui distingue Euclide, c’est sa capacité à transformer des découvertes éparses en un système 

cohérent. Les Égyptiens avaient pratiqué l’arpentage, les Babyloniens l’astronomie numérique, les 

pythagoriciens l’étude des proportions, et Platon avait donné une dimension cosmologique aux formes 

géométriques. Euclide reprit cet héritage et en fit une science universelle. La géométrie cessa d’être un 

art pratique ou une spéculation philosophique pour devenir un langage rationnel applicable en tout temps 

et en tout lieu. 

Parmi les nombreuses notions exposées dans les Éléments figure la division d’un segment « en 

extrême et moyenne raison » (Les Éléments, Livre VI, Déf. 3). Il s’agit de la première définition 

mathématique du fameux nombre d’or (≈1,618). Euclide démontra que ce rapport exprimait une 

proportion particulière, déjà présente dans le dodécaèdre composé de douze pentagones réguliers.  

Cette proportion, présente dans la structure du pentagone régulier, fut sans doute connue des 

Pythagoriciens, qui voyaient dans les figures régulières l’expression de l’ordre du monde. Selon Proclus, 

dans un de ses commentaires sur le premier livre d’Euclide37, Hippase de Métaponte, un Pythagoricien 

du Vème siècle avant notre ère, aurait découvert la construction du dodécaèdre régulier et les rapports 

irrationnels qu’il renfermait. Il rapporta : « On dit qu’un des Pythagoriciens fut le premier à découvrir 

le dodécaèdre dans la sphère, et qu’ayant rendu publique la manière de l’y inscrire, il disparut sous 

l’action du dieu, car il était juste qu’il meure, lui qui avait révélé ce qui devait rester secret. » 

Cette tradition illustre la discipline du silence (ἐχεμυθία) qui régnait dans l’école pythagoricienne, où 

tout savoir était tenu pour sacré. Les découvertes mathématiques y étaient perçues comme des révélations 
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d’ordre divin et leur divulgation constituait une faute grave. À cette époque, le savoir n’était pas 

accessible à tous, il relevait d’une pratique spirituelle, une voie de purification intérieure, réservée à un 

cercle restreint d’initiés. Comme le rappelle Jamblique14: « Chez les Pythagoriciens, tout enseignement 

avait un caractère sacré, réservé aux initiés. La parole du maître était chose sainte, et toute doctrine 

révélée hors du cercle des disciples était tenue pour une profanation. Ceux qui enfreignaient la règle du 

silence et divulguaient les enseignements étaient exclus de la communauté comme des impurs. » 

Porphyre confirma également le caractère initiatique et la pédagogie secrète de l’école : « À ceux qui 

venaient pour écouter son enseignement, il ordonnait de passer cinq années dans le silence, pour 

éprouver s’ils savaient dominer leur langue et être maîtres de leurs paroles. Et s’ils traversaient ce 

temps dans le calme et la douceur, alors il les admettait à la contemplation des sciences. » 

Ces témoignages expriment le vertige qu’a pu susciter l’une des découvertes les plus bouleversantes 

de toute l’histoire de la pensée grecque. La mise au jour des nombres irrationnels, révélés dans la 

construction du dodécaèdre, remit en cause le cœur même de la doctrine de Pythagore, qui reposait sur 

l’idée que tout l’univers obéit à la mesure et au nombre. Ainsi, en donnant à ces figures une structure 

rationnelle, Euclide transforma une intuition mystique en un véritable système démonstratif, fondé sur 

la mesure, l’axiome et la preuve. 

Cette filiation qui marqua le passage de la pensée grecque d’une dimension ésotérique à une science 

plus rationnelle, permet de comprendre combien le retour à l’esprit de l’antiquité fit battre le cœur de la 

Renaissance.  

Euclide fut redécouvert en Occident dès le XIIème siècle grâce aux traductions d’Adélard de Bath (vers 

1080–vers 1152) et de Campanus de Novare (vers 1220–1296)38, puis imprimé à Venise en 1482. C’est 

dans ce climat que Léonard de Vinci (1452–1519) étudia la géométrie. Ses codex témoignent d’un intérêt 

constant pour les mêmes régularités que celles mises en évidence par Fibonacci (1170–1250), auteur de 

la célèbre suite numérique (1, 1, 2, 3, 5, 8, 13…), dont les rapports successifs tendent vers le nombre 

d’or39 et expriment l’harmonie présente dans la nature.  

Léonard remplit ses carnets de dessins d’hélices, de spirales et de vortex (figures 8). Cette fascination 

se retrouve dans ses études conservées à la Royal Collection Trust, où il analysa les mouvements de 

l’eau sous forme de tourbillons. Même dans ses visions sur le déluge, comme dans ses observations des 

tempêtes et du mouvement de l’air, les flots en furie s’organisent en spirales, révélant l’omniprésence de 

ces formes dans la nature.  

 

Étude de l’eau 

RCIN 912660, Codex Windsor, De Vinci 

 

Déluge 

RCIN 912380, Codex Windsor, De Vinci 

Figures 8 

Cette recherche de régularités trouva aussi un prolongement dans ses études anatomiques. Fasciné par 

le mouvement des fluides, Léonard disséqua des cœurs de bœufs afin de mieux comprendre la forme des 

ventricules et le mouvement du sang. Il injecta de la cire dans les cavités pour en obtenir des moulages 

et visualiser les structures internes. Il observa que le flux sanguin à l’intérieur du cœur s’organise 
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naturellement en spirale, un mouvement qui ferme les valves cardiaques de façon rapide et efficace 

(figure 9). Ses observations, qu’il décrivit dans ses notes anatomiques sur le cœur (RL 19073r), 

témoignent d’une compréhension remarquable du rôle de la géométrie naturelle avant que la science 

moderne ne le confirme. 

 

Figure 9. Étude valve aortique 

Rcin 919083, Codex Windsor, De Vinci 

À la suite d’Euclide, qui avait donné à la géométrie sa forme la plus rigoureuse, la pensée grecque 

découvrit avec Archimède (287–212 av. J.-C.) l’importance de l’application des mathématiques à la 

compréhension des forces, des poids et des mouvements. Né à Syracuse et probablement, selon le 

philosophe Proclus37, formé auprès des savants d’Alexandrie, Archimède fut à la fois mathématicien, 

physicien, ingénieur et inventeur. Il incarne l’idéal du savant complet, capable de relier la théorie à la 

pratique et d’inscrire les mathématiques au cœur de la vie quotidienne. 

Ses recherches, sur la mécanique et les équilibres, furent déterminantes. Il établit les lois du levier et 

définit la notion de centre de gravité, ouvrant la voie à une véritable science des forces. Il développa 

également un savoir hydraulique expérimental, concevant la célèbre vis d’Archimède qui permet d’élever 

l’eau (figure 10). Il imagina des machines de siège, des catapultes, des poulies, des grues, inspirées de 

la nature et qui témoignent d’une compréhension rationnelle des lois de la physique. Par cette capacité à 

traduire les mathématiques en applications concrètes, il devint l’un des modèles les plus puissants de 

l’Antiquité. 

 

Figure 10. Outils et Machines, Vis d’Archimède 

F 386 r, Codex Atlanticus, De Vinci 
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Dans ses études mécaniques et d’ingénierie, Léonard évoqua, à plusieurs reprises Archimède. Comme 

son illustre prédécesseur, il ne séparait jamais la théorie de l’expérience. Ses croquis de ponts, de poulies, 

de pompes, de vis hydrauliques et de machines de guerre prolongent directement l’inspiration 

archimédienne, dans une recherche constante sur les principes fondamentaux qui régissent le mouvement 

et l’équilibre. 

Un dessin de Léonard de Vinci illustre une réflexion sur les rapports proportionnels nécessaires à 

l’équilibre des mécanismes (figure 11). La figure est composée de deux roues de diamètres différents, 

dans un rapport de 5/4, la plus grande a un diamètre supérieur d’un quart à celui de la petite. Les deux 

roues sont reliées par un système de bielles articulées fixées sur les moyeux, formant deux triangles 

rectangles. Ce dispositif relève d’une étude cinématique et vise à comprendre le mouvement des pièces 

entre elles, indépendamment des forces qui les provoquent. L’ensemble constitue un mécanisme fondé 

sur le principe du levier composé, où plusieurs leviers coopèrent pour transmettre, transformer ou 

amplifier un mouvement. Dans ce dispositif, les barres obliques et les axes remplissent la fonction de 

leviers, assurant la transmission du mouvement d’une roue à l’autre selon des rapports de longueur 

précis. 

  

Figure 11. Étude mécanique 

Institut de France, Manuscrit B, 36 recto 

Si l’on prolonge les segments jusqu’à la base des cercles, l’ensemble délimite un rectangle dont les 

côtés sont dans un rapport de 3/2. Ce rapport se retrouve dans la transmission des forces selon des bras 

inégaux, comparable à la loi du levier formulée par Archimède. Il se manifeste dans la répartition des 

charges d’un système équilibré. La roue arrière supporte environ soixante pour cent du poids total, tandis 

que la roue avant en porte quarante pour cent. Cette disposition assure la stabilité de l’ensemble, avec 

un centre de gravité légèrement déplacé vers l’arrière. Il convient enfin de souligner que les deux rapports 

présents dans ce mécanisme reflètent les rapports harmoniques décrits dans la théorie musicale de 

Pythagore, celui de la tierce majeure (5/4) et celui de la quinte juste (3/2). 

Ainsi, Léonard a relié les lois de la mécanique d’Archimède aux principes d’harmonie musicale 

décrits par Pythagore en les inscrivant dans les formes géométriques élémentaires (carré, triangle, 

rectangle et cercle). Comme Archimède, Léonard voyait dans la mécanique la démonstration vivante de 

la puissance des mathématiques. Il exprima cette idée avec clarté dans le manuscrit E de l’institut de 

France, folio 8.v: 

«La meccanica è il paradiso delle scienze matematiche, perché con quella si viene al frutto delle 

scienze matematiche.» 

« La mécanique est le paradis des sciences mathématiques, car c’est par elle que les mathématiques 

donnent leurs fruits. »  
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1.3. L’antiquité romaine, la transmission et l’héritage du savoir grec  

De la Grèce à Rome, l’idéal d’un monde ordonné par les mathématiques se transmit sans rupture. 

Archimède en avait montré la puissance mécanique, l’architecte et ingénieur, Marcus Vitruvius Pollio, 

dit Vitruve (Ier siècle av. J.-C.) en fit la règle de l’art de bâtir. Dans son traité De Architectura40, le seul 

ouvrage d’architecture de l’Antiquité qui nous soit parvenu, il reprit l’héritage grec en y intégrant une 

conception profondément unitaire du monde. Pour lui, l’architecture devait refléter l’ordre de l’univers, 

et l’homme en constituait le modèle à travers ses proportions qui incarnaient à la fois l’équilibre et 

l’harmonie. Vitruve affirma ainsi que « l’homme est la mesure de toute chose ». L’architecture relevait 

donc d’une cosmologie où l’homme reflète l’univers dans son ensemble, une idée déjà présente chez 

Empédocle, Hippocrate ou Platon mais que Vitruve appliqua pour la première fois à l’art de bâtir. 

Dans la continuité des savants grecs, Vitruve fonda sa théorie de la construction sur l’équilibre des 

quatre éléments, la terre, l’eau, l’air et le feu, dont la juste combinaison assure la stabilité et la durabilité 

des ouvrages. La terre, par sa masse et sa cohésion, constituait la base des fondations et des murs 

porteurs, l’architecte romain insista sur la qualité du sol, qu’il faut éprouver avant toute construction (De 

Architectura, II, 1). L’eau, principe de vie et d’union des matières, qui intervient dans la préparation de 

la chaux, du mortier et des enduits, devait être pure, légère et non stagnante pour garantir la solidité des 

ouvrages (VIII, 3). Pour l’air, élément du souffle vital, il recommanda de choisir l’orientation des villes 

et des maisons en fonction des vents dominants, pour préserver la santé des habitants (I, 4). Quant au 

feu, Vitruve conseilla de carboniser la surface du bois afin de le rendre plus résistant à l’humidité et aux 

insectes (II, 9,2). Ainsi, bâtir revenait à trouver la juste mesure, celle qui maintient l’harmonie entre les 

forces naturelles, où chaque élément agit en correspondance avec les autres, formant un tout 

indissociable.   

Dans ce cadre conceptuel, Léonard de Vinci aborda la nature comme un champ d’expérimentation 

régi par les lois de la physique. Pour lui, comprendre le monde revenait à en observer les forces 

élémentaires, à en analyser les effets et à en mesurer les rapports. Il étudia la terre à travers la structure 

des sols et des roches, notant les effets du temps, de l’érosion et de la gravité sur la forme du relief. Il 

consacra à l’eau d’innombrables observations, l’analysant comme une force motrice du monde, il en 

mesura la pression, la vitesse et la turbulence, et étudia le comportement des courants dans les rivières 

et les canaux. Il explora la physique de l’air, observant la résistance, la portance et le mouvement, afin 

de comprendre les principes du vol et de la propagation du son. Quant au feu, il examina ses effets sur 

les métaux, les pigments et le bois.  Dans le folio 91 v., du Codex Madrid I, Léonard reprit explicitement 

un conseil hérité de Vitruve « Ligna quae leviter amburuntur, diuturniora fiunt. » (II, 9,2):   

«Il legno, la cui superficie sia stata leggermente abbrusciata, diventa più duro e più atto a resistere 

all’umidità.» 

« Le bois dont la surface a été légèrement brûlée devient plus dur et plus résistant à l’humidité. » 

Cette technique41 a été identifiée sur des pieux et différents éléments en bois mis au jour à Ostie, dont 

les vestiges se situent principalement entre le Iᵉʳ et le IIIᵉ siècle après J.-C., puis à Pompéi et à 

Herculanum, conservées dans leur état de 79 après J.-C., ainsi que dans les camps militaires du Limes 

de Germanie occupés du Iᵉʳ au IIIᵉ siècle. Les traces relevées concernent aussi bien des pieux de 

soutènement et des éléments porteurs que des poteaux de palissades militaires et des piquets de clôture. 

L’ensemble de ces données atteste que les romains recouraient déjà à la carbonisation superficielle du 

bois dans des contextes variés, bien avant que Léonard de Vinci n’en reformule le principe à la 

Renaissance. 

Léonard de Vinci prolongea les principes vitruviens en les appliquant également à l’étude du corps 

humain. Pour lui, les mêmes lois qui gouvernent la matière s’expriment dans les proportions de l’homme. 

Il voyait dans le corps humain un système naturellement équilibré, gouverné par les mêmes lois 

physiques que celles du monde, la gravité, la tension, l’appui et la résistance42. La mécanique du corps 

constituait, à ses yeux, un modèle parfait d’efficacité dont il s’inspira dans ses recherches et ses 
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inventions. En observant le fonctionnement des muscles, il transposa le geste humain dans des systèmes 

articulés (figure 12), et il reprit les rapports de proportion du corps dans plusieurs de ses créations, 

notamment dans la conception de son cheval idéal.  

 

Figure 12. Codex atlanticus f844r 

De Vinci 

2. L’homme de Vitruve selon Léonard de Vinci 

2.1. La genèse et les sources du dessin 

La preuve la plus éclatante de l’influence de la pensée antique sur Léonard de Vinci demeure son 

célèbre dessin de l’Homme de Vitruve qui concentre dans une seule image tout un héritage millénaire. 

On y retrouve l’inspiration de Thalès, l’un des premiers penseurs grecs, à avoir introduit le raisonnement 

géométrique dans l’étude du monde. Dans ce dessin, le corps humain est considéré comme une figure 

mesurable, soumis à la géométrie comme n’importe quel objet naturel. À cette première intuition s’ajoute 

l’influence de Pythagore, par l’incarnation d’une harmonie visuelle et une quête de perfection où la 

géométrie devient le moyen d’approcher l’idéal. Mais cette harmonie n’est pas seulement celle du corps, 

elle est l’expression d’une unité plus vaste. C’est ici qu’intervient l’inspiration de Platon, qui affirmait 

dans le Timée27 que « tout vient de l’Un ». Léonard illustre l’homme comme un microcosme, une partie 

intégrée dans un ensemble plus large, reflet d’une unité fondamentale qui relie toutes choses. L’influence 

d’Aristote apparaît également, à travers la méthode empirique fondée sur l’observation et 

l’expérimentation que Léonard utilisa pour concevoir ce dessin. Cette quête de perfection conduit 

naturellement à Euclide. Tout l’équilibre dans la conception de ce dessin repose sur l’harmonie de la 

géométrie. À cela s’ajoute l’héritage d’Archimède, qui révéla les lois de la pesanteur et de l’équilibre. 

L’homme de Vitruve est représenté dans deux mouvements superposés qui démontre que, lorsque les 

jambes sont écartées et les bras déployés en trois quarts, l’homme conserve son équilibre et sa 

stabilité. En revanche, avec les jambes jointes et les bras dans la même position, cet équilibre se perdrait, 

il se maintient, en revanche, avec les bras écartés à l’horizontal. Ce dessin illustre ainsi, de manière 

rationnelle, les lois de la gravité et de la stabilité du corps humain. 

Cependant, il faut rappeler que la genèse et la représentation de l’homme de Vitruve ne sont pas nées 

de l’imagination de Léonard. Elles s’appuient et répondent à un problème formulé par Vitruve dans son 

traité De architectura (Livre III, chap. 1), où sont exposées les proportions idéales du corps humain.  Il 

consigna : « Le nombril est, naturellement, le centre du corps humain. Si, en effet, un homme est couché 
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sur le dos, les mains et les pieds étendus, et que l’on place un compas sur son nombril, en traçant un 

cercle on passera par les extrémités des mains et des pieds. De même, la hauteur de l’homme est égale 

à l’envergure de ses bras ; ainsi, un carré peut être tracé autour de lui. »  

Vitruve posait ainsi les bases d’une réflexion : Comment inscrire un homme dans deux positions, à la 

fois dans un carré et dans un cercle ?  

Ce défi posé par l’architecte romain fut longtemps une énigme redoutable pour de nombreux érudits 

et artistes. Mariano di Jacopo dit Taccola (1382-1453)43 esquissa une figure schématique sans précision 

anatomique (figure 13).  Francesco di Giorgio Martini (1439-1501)44, à son tour, tenta d’accorder la 

géométrie aux proportions du corps, mais ses dessins restèrent maladroits (figure 14). Enfin, Giacomo 

Andrea de Ferrara (vers 1450-1500)45, lecteur attentif de Vitruve, proche de Léonard, proposa une 

solution encore bancale, où la figure ne respectait pas l’anatomie humaine (figure 15). Tous se heurtèrent 

à des contradictions ou à des approximations. C’est dire à quel point ce problème exerçait une fascination 

tenace tout en résistant aux plus habiles. En relevant ce défi, Léonard fut le premier à donner à ce 

problème antique une solution visuelle à la fois rigoureuse et universelle. Il transforma une théorie 

architecturale en une véritable construction géométrique fondée sur la mesure de l’homme. 

 

Figure 13. Taccola,  

vers 1419/1450 

 

Figure 14. Giorgio Martini,  

vers 1475/1482 

 

Figure 15. Giacomo Andrea de 

Ferrara, vers 1490 

2.2. Entre infini et mesure 

Dans cette quête d’unité, Léonard s’inscrivait dans la tradition des géomètres grecs, notamment 

Pythagore et Euclide, pour qui la beauté résultait de la mesure et des rapports justes. Il voyait dans la 

géométrie un moyen de relier l’homme à l’univers. Le corps humain, par ses proportions, devait refléter 

un ordre universel à l’œuvre dans la nature et les êtres vivants, mais aussi dans le déploiement des formes, 

des sons et des lois physiques. C’est dans cette continuité que Léonard s’intéressa aux travaux d’Euclide, 

dont les Éléments posent les fondements de la géométrie classique. 

Chez Euclide, la recherche de proportions idéales repose sur l’idée d’un équilibre entre deux rapports. 

Cette relation qui relie la mesure à l’harmonie, devint un principe fondamental de la géométrie.  La 

proportion dite « extrême et moyenne » décrite dans le livre VI des Éléments d’Euclide, en offre 

l’exemple le plus abouti (figures 16). Elle consiste à diviser un segment de telle sorte que le rapport de 

la totalité à la plus grande partie soit égal au rapport de cette plus grande partie à la plus petite. Autrement 

dit, si l’on divise un segment AB en un point C, on obtient la relation : AB/BC = BC/AC. 
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Euclidis Elementa, Vaticanus Graecus 190, 

Bibliothèque apostolique du Vatican, 

IXème siècle, folio 31r, section du livre VI 

 

Reproduction du Rectangle d’or 

Figures 16 

Pour désigner cette harmonie, Euclide utilisa un signe distinctif représenté par un cercle traversé par 

une ligne horizontale. Il le plaça à l’intersection entre la hauteur commune au carré et au petit rectangle 

d’or. À cet endroit, le rapport entre ces deux segments est égal au nombre d’or car le côté du petit 

rectangle d’or est 1/ φ puisque EA=ES= √5/2 et SB=(√5-1)/2= 1/ φ  (figures 16). 

Dans la pensée grecque, le cercle représentait l’unité, la totalité et la perfection. Quant à la barre, dans 

la pratique géométrique grecque, elle indiquait l’acte rationnel de division d’un segment, autrement dit 

la mesure du tout par la partie. L’union du cercle et de la barre incarne ainsi l’esprit grec d’un ordre 

mesuré, où l’unité se divise en parties proportionnelles.  

Au XIXème siècle, le mathématicien américain Mark Barr46 proposa d’utiliser la lettre grecque φ pour 

désigner le nombre d’or. Selon une explication, souvent reprise dans la littérature, notamment chez 

Matila Ghyka47 et d’autres auteurs du XXème siècle, Barr aurait choisi cette lettre en hommage au 

sculpteur Phidias, auquel on attribuait l’usage du nombre d’or. Toutefois, aucune preuve directe ne vient 

confirmer cette hypothèse. Il s’agit vraisemblablement d’une interprétation ultérieure. On peut donc 

aussi supposer que, familier des écrits d’Euclide, il ait repris le même signe mais à la verticale, dans la 

continuité du signe antique. 

Léonard de Vinci s’est inspiré des études réalisées par Euclide (figure 17), jusqu’à recopier certaines 

figures, parmi elles, une illustration du théorème de Pythagore. Dans la figure réalisée par Euclide 

réapparaît de nouveau le signe d’un cercle traversé par un trait horizontal (figure 18). Ce rapprochement 

a conduit à réexaminer la portée de cette figure. 
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Figure 17. Études géométriques 

De Vinci, Codex Arundel, British Library 

 

Figure 18. Théorème de Pythagore 

Élément I, proposition 47 

Bibliothèque apostolique du Vatican 

L’analyse de la figure, nous a permis de découvrir l’existence d’une structure géométrique sous-

jacente, qui lie le théorème de Pythagore au nombre d’or (Figure 19). Si l’on considère un carré ABCD 

de côté 1 et que l’on trace un arc de cercle de centre E, situé au milieu du segment BC, et de rayon √5/2, 

cet arc permet de construire un rectangle d’or TSCD, de côté (1+√5) /2, qui passe précisément par les 

sommets O et L du petit carré pythagoricien de côté (1/√2) car, grâce au théorème de Pythagore, sa 

diagonale BR est égale à 1. Le point d’intersection M entre le rectangle d’or TSDC et le petit carré 

pythagoricien détermine la position du rectangle d’or MPSB ainsi que celle du carré TMPA. De manière 

analogue, en prolongeant le segment OB (côté du petit carré pythagoricien) jusqu’au segment TS, on 

obtient le point U, qui permet de définir un rectangle d’or TUKA ainsi qu’un carré USBK. 

 

Figure 19. Reproduction du rectangle d’or combiné au Théorème de Pythagore 

L est situé 1/2 à droite du grand carré de côté 1 car OL=1. N est le milieu de LE, situé sur la droite 

passant par AB. Ainsi BN= 1/4 et AE=EL= √5/2. AEL est donc un triangle rectangle. 

Par le théorème de Pythagore :  
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AL= √(AE2+EL2) = √ (5/4 + 5/4) = (√10) /2 

L’aire du carré de côté AL, associée à l’angle AEL, est alors égale à la somme des aires du rectangle 

d’or TSCD, du petit carré pythagoricien ORLB et du carré USBK ou TMPA.  

Soit AL2 = (TSxSC) + OB2 +US2   où US = SC-1= 1/φ 

(√10/2)2 = (1 x φ) +(1/√2)2 +( 1/φ)2 

Ces rapports peuvent s’expliquer par la longueur √5/2 qui agit comme une véritable charnière 

géométrique entre le rectangle d’or et le théorème de Pythagore. Cette longueur est un facteur 

multiplicateur au sein de la famille des triangles rectangles associés (figure 20). 

En effet, si dans un triangle rectangle, le plus grand côté vaut deux fois le plus petit, alors l’aire du 

triangle est égale à l’aire du carré construit sur le petit côté. Ce procédé se poursuit en prenant la moitié 

de l’hypoténuse comme nouveau petit côté. On constate que le petit côté est passé de 1/2 à √5/4, il a 

donc été multiplié par √5/2. Et l’aire est passé de 1/4 à 5/16, elle a donc été multiplié par (√5/2)2. 

 

Figure 20. Représentation géométrique de la suite des triangles rectangles gouvernés par la progression √5/2 

Cette construction fait également apparaître une nouvelle suite récurrente entière, définie 

géométriquement à partir d’un carré initial et d’une itération du théorème de Pythagore. Les rapports 

successifs convergent vers la proportion du nombre d’or. Les valeurs de la suite sont : 1, 4, 5, 9, 14, 23, 

37, 60, 97, 157…Cette progression suit une loi d’addition où chaque terme est la somme des deux 

précédents.  

Le premier terme correspond à un petit carré de côté ½. L’aire de ce carré vaut donc (1/2)2 = 0,25. 

Pour éviter les fractions, on choisit une nouvelle échelle, où l’aire 0,25 devient 1. Le second terme est 

un carré, de côté 1, qui devient 4, dans cette nouvelle échelle. Le troisième est issu de l’hypoténuse du 

triangle rectangle des valeurs précédentes. Son carré d’aire de 1,25 devient 5 (1+4= 5).  

Ainsi, à chaque étape, on forme un triangle rectangle à partir des longueurs précédentes, puis on 

construit un nouveau carré sur l’hypoténuse obtenue.  

Cette croissance géométrique engendre une série de rapports successifs qui tendent vers une valeur 

limite correspondant à la racine carrée du nombre d’or.  

 On désigne R(k) le rapport entre deux longueurs successives. Le tableau suivant présente ces valeurs 

sous forme exacte et décimale, qui illustre la convergence vers √ φ ≈ 1,272 (figure 21). 
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Figure 21. Tableau des rapports R(k) 

L’étude numérique montre qu’à partir du cinquième terme, l’écart entre deux rapports successifs 

décroit selon une progression géométrique de raison (1/φ ≈ 0,618). Cette propriété est bien connue en 

analyse des suites récurrentes. Toutefois, elle prend ici une forme inédite, appliquée à une construction 

géométrique issue du théorème de Pythagore (figure 22).  

 

Figure 22. Représentation géométrique de la suite qui converge vers √ φ 

2.3. L’unité du monde 

L’idée d’une harmonie entre mesure et infini, héritée de la tradition pythagoricienne48, a profondément 

marqué la pensée de la Renaissance. Léonard de Vinci, en s’appuyant sur les textes antiques, a cherché 

à comprendre et à révéler les rapports fondamentaux qui structurent l’univers. Dans ses études sur les 

proportions du corps, Léonard explora les rapports mesurables qui structurent l’anatomie humaine, selon 

des principes d’harmonie et de proportion49. Il nota ces rapports sous forme de fractions. Il ne s’agissait 

pas, pour lui, de retrouver le nombre d’or en tant que valeur absolue, mais plutôt de comprendre comment 

des rapports concrets et rationnels pouvaient traduire l’ordre harmonique du monde. Pour exprimer 

l’équilibre des rapports géométriques, d’une mesure capable d’unir le multiple et la totalité, il reprit le 

même symbole qu’Euclide (figures 23, 25). 
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Euclide 

 

Da Vinci 

Symbole d’harmonie 

 

Figures 23. Étude de proportions 

Rcin 919130, Royal Collection Trust  

De Vinci  

Dans la conception de l’homme de Vitruve (figure 24), Léonard de Vinci recopia sur le dessin les 

proportions établies par Vitruve, mais il ne se limita pas à les reproduire. Il en fit un principe 

d’expérimentation. Par l’observation directe du corps, par la dissection et l’étude du mouvement, il 

vérifia ces rapports, les rectifia et les harmonisa afin que chaque partie contribue à l’équilibre du tout. 

Son objectif dépassa la mesure, il chercha une unité organique, où la forme humaine ne se réduit plus à 

une somme de segments, mais se comprend comme un système de correspondances.  

 

Figure 24. L’homme de Vitruve, 

Galerie de l’académie de Venise, De Vinci 



© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                                               Page | 24 

Léonard constata que les différentes parties du corps se répondent selon un système rigoureux de 

rapports proportionnels (figures 24, 25). La largeur des épaules est égale à la moitié d’une jambe, 

proportion identique à celle qui va du torse au pubis, ou du torse au sommet de la tête. La main, quant à 

elle, correspond aux dimensions du visage, de la racine des cheveux jusqu’au menton, ainsi que celle qui 

sépare le nombril du pubis. La longueur du pied équivaut à la distance du poignet au coude, mais aussi 

à celle du buste au nombril.  

De nombreuses parties du corps ont une longueur double l’une par rapport l’autre. Par exemple, la 

longueur du pubis à la plante des pieds correspond à la moitié de la hauteur du corps. La hauteur comprise 

entre le cou et le pubis est deux fois celle située entre le cou et le sommet de la tête, et la distance du cou 

au sommet de la tête est, à son tour, deux fois celle du cou au buste. La même logique s’observe dans 

les membres supérieurs. La distance de l’épaule au milieu du buste est deux fois plus petite que celle du 

milieu du buste au coude, et la longueur du coude à la main se retrouve doublée dans la portée totale du 

bras jusqu’au milieu du buste. 

D’autres rapports complètent cette structure selon des multiplications régulières. Le segment compris 

entre le buste et le pubis est trois fois plus grand que celui qui sépare le cou du buste. La hauteur du 

pubis au sommet de la tête présente le même rapport avec la distance du cou au sommet de la tête. La 

hauteur du cou au pubis est, quant à elle, quatre fois plus grande que celle du cou au buste, tandis que la 

distance du pubis à la plante des pieds en représente six fois la longueur. 

Ce principe se retrouve dans ses études de proportions humaines, notamment sur un dessin conservé 

à la Galerie de l’académie de Venise, où Léonard a segmenté le visage d’un homme de profil. Sur le côté 

gauche de la feuille apparaissent des fractions 1/2, 1/3, 1/4, et 1/6 (figure 25).  

  

Figures 25. Étude de proportions 

Galerie de l’académie de Venise 

De Vinci 

Chaque mesure qui renvoie à une autre, révèle un principe d’autosimilarité. Le corps de l’homme de 

Vitruve manifeste une récurrence géométrique comme si la forme humaine portait en elle un message 

mathématique. Ainsi, chaque partie devient un multiple ou un sous-multiple rationnel de l’ensemble. 

Les multiples de 2, 3, 4 et 6, employés par Léonard, révèlent que la structure du corps repose sur un 

système duodécimal50 hérité des méthodes de mesure antiques. Dans l’Antiquité, la base 12 était 

considérée comme la plus harmonieuse, car elle permettait d’engendrer un grand nombre de divisions 



© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                                               Page | 25 

simples et exactes, la moitié, le tiers, le quart, le sixième. Elle offrait une souplesse de calcul que le 

système décimal ne pouvait pas atteindre. 

À la Renaissance aussi, ce système faisait partie de la vie quotidienne. Dans la monnaie, il structurait 

toutes les valeurs, douze deniers formaient un sou, vingt sous équivalaient à une livre, soit deux cent 

quarante deniers pour une livre. On comptait également par grandes mesures de cent vingt unités, plus 

faciles à diviser en douzaines pour le commerce. Dans les longueurs et les poids, le même principe 

s’appliquait, douze pouces égalaient un pied et douze onces une livre. Ce modèle, hérité de Rome, fut 

encore enseigné par Luca Pacioli dans sa Summa de arithmetica51 (1494), dans laquelle il décrivit les 

méthodes de calcul marchand fondées sur ces divisions en douze.  

Vitruve lui-même avait recours à ce principe métrologique dans les directives qu’il formula pour 

établir les proportions de l’homme idéal40 : « Quatre paumes font un pied, six paumes font une coudée, 

et vingt-quatre paumes font un homme. » 

Toutefois, il ne respecta pas toujours le système duodécimal, dans ses consignes. Il affirma, par 

exemple, que la tête devait représenter un dixième de la hauteur totale du corps, ce qui introduit une 

logique décimale étrangère à la division antique. 

Léonard de Vinci reprit donc l’énoncé de Vitruve, qu’il recopia presque mot pour mot sur son célèbre 

dessin de L’Homme de Vitruve. Cependant, il ne le suivit pas dans ses mesures. S’il adopta le système 

duodécimal, hérité de la tradition antique, comme en témoignent les rapports fondés sur les multiples de 

2, 3, 4 et 6, les proportions qu’il observa montrent que ce modèle ne suffisait pas à rendre compte de la 

complexité du corps humain. 

Pour certaines parties, telles que le pied, la main ou le visage, il étendit le principe duodécimal à une 

échelle plus fine, fondée sur une base commune de 120 divisions de l’unité, le plus petit commun 

multiple des principaux dénominateurs employés pour décrire les rapports de la forme humaine (figure 

26).  

Figure 26. Tableau des proportions du corps humain telles qu’on peut les inférer 

 sur l’homme de Vitruve de Léonard de Vinci 

Partie du corps Valeur Fraction exacte 

Du sommet de la tête à la plante des pieds 1 1/1 

Du nombril à la plante des pieds 0,60833 73/120 

Du pubis à la plante des pieds 0,5 1/2 

De l’extrémité de la main au milieu du buste 0,5 1/2 

Du pubis au sommet de la tête 0,5 1/2 

Du sommet de la tête au nombril 0,3916 47/120 

Du cou au pubis 0,3333 1/3 

Du buste au pubis 0,25 1/4 

Largeur du buste (d’une épaule à l’autre) 0,25 1/4 

Du sommet de la tête au buste 0,25 1/4 

Du genou à la plante des pieds 0,25 1/4 

Du pubis au genou 0,25 1/4 

Du milieu du buste au coude 0,25 1/4 

Du coude à l’extrémité de la main 0,25 1/4 

Du cou au sommet de la tête 0,1666 1/6 

Longueur du pied 0,1416 17/120 

Du poignet au coude 0,1416 17/120 

Du buste au nombril 0,1416 17/120 

De l’épaule au milieu du buste 0,125 1/8 

Du nombril au pubis 0,108 13/120 

De la racine des cheveux au menton (visage) 0,108 13/120 

De l’extrémité de la main au poignet (main) 0,108 13/120 

Du cou au buste 0,0833 1/12 
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Le choix d’une base de 120 unités permet d’obtenir des rapports qui deviennent parfaitement 

mesurables (40, 47, 60, etc.). Par exemple, la moitié du corps correspond à 60 unités sur 120, et la 

longueur du pied à 17 unités, soit une proportion de 17/120. Ainsi, chaque valeur de la suite est calculée 

à partir de la précédente selon un rapport simple et rationnel, qui assure la continuité et l’harmonie du 

système de proportions (figure 27). 

 

Figure 27. Équivalence des rapports sur une base de120 divisions 

Le nombre 120 s’inscrit aussi dans la longue tradition antique des recherches sur l’harmonie des 

proportions, en particulier dans le système sexagésimal4, hérité des civilisations mésopotamiennes pour 

définir la mesure du temps et de l’espace. Le choix de Léonard d’adopter cette base numérique témoigne 

de sa volonté d’ancrer la science du corps humain dans la continuité d’un savoir ancien, où la mesure et 

la proportion expriment l’ordre universel. En outre, l’intérêt de ce système réside également dans sa 

souplesse harmonique. Il permet d’engendrer et de combiner à la fois des rapports binaires (1/2, 1/4, 1/8) 

et ternaires (1/3, 1/6, 1/12), au sein d’une même structure de mesure. Appliqué aux proportions du corps 

humain, il agit comme un « modulus harmonique », c’est-à-dire une unité de référence qui relie toutes 

les subdivisions du corps à une échelle commune. 

Le rayon du cercle, qui a pour centre le nombril, a une valeur (73/120), proche de l’inverse du nombre 

d’or (0,618). Par conséquent, la figure semble s’inscrire dans deux rectangles d’or superposés, l’un issu 

de la géométrie du carré, l’autre de celle du cercle.   

Au-delà de sa valeur arithmétique, le nombre 120 occupe, dans la tradition pythagoricienne52, une 

place structurante. Il est interprété comme un principe d’organisation numérique qui reflète l’harmonie 

du monde. Chez les penseurs de l’Antiquité53, les rapports mathématiques étaient perçus comme des 

modèles d’ordre universel, capables de rendre compte aussi bien du mouvement des astres que des 

structures du vivant. 

Le nombre 120 résulte du produit des cinq premiers entiers (1 × 2 × 3 × 4 × 5=120). Cela représentait, 

pour les pythagoriciens, une conception hiérarchique du monde qui symbolisait le passage progressif de 

l’unité à la complexité, de l’abstraction à l’incarnation. Chaque nombre était ainsi envisagé comme une 

étape qui participe à la genèse du réel. 

Dans la pensée grecque, cette gradation s’exprime à travers cinq niveaux54, la Monade (1), principe 

d’unité et d’origine, la Dyade (2), principe de dualité et de différenciation, la Triade (3), principe 

d’harmonie et de médiation, la Tétrade (4), principe d’organisation et de stabilité du monde, et la Pentade 

(5), principe de génération et de vie (figure 28). L’ensemble (1 à 5) définit une structure complète, où la 

combinaison de ces rapports numériques est perçue comme la base de toute forme organisée. 



© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                                               Page | 27 

 

Figure 28. La hiérarchie pythagoricienne des nombres 

Chez Platon, notamment dans le Timée27, où les cinq solides parfaits, constituent la structure 

géométrique fondamentale du cosmos, le dodécaèdre, symbole d’unité et l’icosaèdre, miroir de ce 

dernier, possèdent un groupe complet de symétrie comprenant cent vingt transformations, soixante 

rotations et soixante réflexions, qui ramènent la figure sur elle-même sans altérer sa structure (figures 

6). Ce nombre 120 illustre à la fois la complexité harmonieuse de ces figures et la perfection géométrique 

que les philosophes de l’Antiquité associaient à l’ordre universel. 

Dans les traditions monothéistes ultérieures, le nombre 120 conserve également une valeur 

symbolique. Dans la Genèse (ancien testament, 6, verset 3), Dieu fixa à cent vingt ans la durée de vie de 

l’homme. Dans le Livre des Actes des Apôtres (nouveau testament, 1, verset 15), ce même nombre 

apparaît à nouveau, cent vingt disciples sont réunis lors de la descente de l’Esprit Saint. Dans la tradition 

islamique primitive, la durée de cent vingt jours correspond au temps nécessaire à la formation de l’être 

humain. Le développement embryonnaire y est décrit comme se déroulant en trois phases de quarante 

jours chacune, d’abord sous forme de goutte, puis de caillot, et enfin d’embryon (Bad’al-Khalq, hadith 

n°3208). Ainsi, de l’arithmétique pythagoricienne à la théologie, ce chiffre se présente comme une unité 

de structure et de totalité, qui relie la science des proportions à une conception globale de l’ordre du 

monde. 

Cette relation, qui repose sur une recherche d’équilibre entre le multiple et l’unité, Léonard de Vinci 

l’exprime également dans ses observations sur la croissance végétale (figure 29). Il nota dans le Codex 

Arundel, folio 152 r.:  

«Ogni anno, quando i rami d’un albero hanno compiuto la loro crescita, la somma delle loro 

grossezze, in ogni livello di ramificazione, è sempre eguale a quella del tronco. » 

« Chaque année, lorsque les branches d’un arbre ont achevé leur croissance, elles auront mis 

ensemble une épaisseur égale à celle du tronc, et à chaque niveau de ramification, l’épaisseur des 

branches issues de la même division sera toujours égale à celle du tronc. » 

Par cette remarque, Léonard transposa une loi de conservation55 où à chaque niveau de division, la 

somme des diamètres des branches filles est égale au diamètre du tronc. Autrement dit, la matière se 

divise, mais l’unité se maintient. 
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Figure 29. Étude de proportions d’un arbre 

De Vinci, Codex Arundel, British Library 

Ce principe admet un parallèle direct dans la musique pythagoricienne16 où la série des douze quintes 

converge vers l’unité. Pour illustrer cette correspondance, les pythagoriciens exprimaient les rapports 

harmoniques en termes de fréquences. Ils observaient que la quinte juste, intervalle fondamental de la 

gamme, se définit par un rapport de 3/2 entre deux sons. 

Soit f la fréquence d’une note fondamentale. La quinte juste correspond au rapport 3/2.  La note située 

une quinte au-dessus a pour fréquence : 

f (quinte) = (3/2) × f 

En enchaînant douze quintes justes successives, c’est-à-dire douze intervalles de rapport 3/2 

appliquées les uns à la suite des autres, on obtient les douze notes du système musical qui forme le cycle 

complet des sons. La fréquence de départ est donc multipliée douze fois par 3/2, ce qui donne : 

f (12 quintes) = f × (3/2)¹² 

Cependant, après l’ajout de ces douze quintes, la hauteur obtenue dépasse la zone où se situait la note 

initiale. Le résultat se trouve à environ sept octaves plus haut puisque douze quintes couvrent 

approximativement 7 octaves. En musique, une octave correspond à un intervalle dont la fréquence est 

le double de la précédente (rapport 2/1). Ainsi, chaque octave multiplie la fréquence par 2, et sept octaves 

correspondent à une multiplication par 27. 

Pour ramener cette fréquence dans le même registre sonore, c’est-à-dire dans la même plage de 

hauteur que la note de départ, il faut donc diviser la fréquence obtenue après les douze quintes par 2⁷.  

f(normalisée) = f (12 quintes) / 2⁷ 

La valeur normalisée obtenue correspond à la note initiale, replacée dans son registre d’origine. Le 

rapport est :  

(3/2)¹²/ 2⁷ ≈ 1,0136 

Ce résultat est très proche de 1, ce qui montre que la série des douze quintes ramène pratiquement à 

la note initiale. Ainsi, de la proportion du corps humain, à celle de la musique et de la nature, le même 

principe d’unité se manifeste. 

Léonard de Vinci concevait la nature comme une œuvre divine régie par des lois d’une perfection 

absolue. Véritable esprit de la Renaissance, il ne chercha pas à opposer la foi et la raison, mais à les unir 

dans une même quête de vérité. Dans ses écrits, à l’instar de Platon qui disait : « Dieu est la mesure de 

toutes choses, bien plus que ne le fut jamais l’homme, comme le dit Protagoras56 », Léonard affirmait 

que les forces naturelles ne sont que les instruments de la volonté divine.  
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Cette conviction transparaît dans la note du Codex Arundel, f 155v, Bristish Library : 

«O mirabile necessità ! Tu costringi ogni effetto ad essere il risultato di sua causa; e per una legge 

breve, severa e immutabile, disponi ogni azione naturale. »  

« Ô merveilleuse nécessité ! Tu contrains tout effet à être le résultat de sa cause, et par une loi brève, 

sévère et immuable, tu disposes de toute action naturelle. » 

Par ces mots, Léonard proclama que le mouvement du cosmos participe de l’harmonie divine. 

Dans cette même perspective, il nota dans le Codex Atlanticus, F 273r, Bibliothèque Ambroisienne : 

«Io t’ubbidisco, Signore, prima per l’amore che ragionelemente portare ti debbo, secondaria che tu 

sai abbreviare o prolungare le vite a li omini. » 

« Je t’obéis, Seigneur, d’abord par l’amour que je te dois raisonnablement, ensuite parce que tu es 

le seul à pouvoir abréger ou prolonger la vie des hommes. » 

Ces paroles révèlent, chez Léonard, la reconnaissance d’un ordre supérieur, intelligible et parfait. Sa 

foi profonde et réfléchie, relevait moins d’une dévotion religieuse que d’une méditation sur l’ordre du 

monde. Il cherchait Dieu dans la raison et l’expérience, voyant dans la nature l’expression d’une 

intelligence créatrice.  

Léonard de Vinci percevait également la cyclicité des phénomènes naturels et l’unité des lois qui 

gouvernent le ciel et la terre. Observateur rigoureux, il comprenait que les mouvements célestes se 

reflètent dans les transformations terrestres, les marées, les saisons, la croissance des êtres vivants. Dans 

le Codex Leicester (folio 9r), il partagea ses observations : 

«L’acqua ritorna per i medesimi luoghi, crescendo e diminuendo per i corsi del sole e della luna. » 

« L’eau revient par les mêmes lieux, croissant et décroissant selon les cours du soleil et de la lune. » 

Ce constat exprime une vision cyclique et mécanique de la nature, où les astres agissent sur les 

éléments selon des lois physiques et mesurables. En cela, Léonard rejoignit l’esprit des anciens 

égyptiens, qui observaient le retour périodique de l’étoile Sothis (Sirius) comme le signe du 

renouvellement des saisons et du cycle de la vie7. 

Toutefois, Léonard se distingua profondément des croyances superstitieuses de son temps. Il 

condamna les astrologues de cour, les devins, les chiromanciens et autres lecteurs de présages, qu’il 

considérait comme autant d’imposteurs se réclamant à tort de la science. Il formula cette idée dans le 

Codex Arundel, folio 176r, British Library : 

«Gli astrologi fanno professione di predire i fatti futuri degli uomini, dicendo che essi nascono dalle 

stelle; ma io dico che, se così fosse, non sarebbe in noi libero arbitrio, e per conseguenza non ci sarebbe 

scienza né ragione. » 

« Les astrologues prétendent prédire les actions futures des hommes, disant qu’elles proviennent des 

étoiles ; mais je dis que, si cela était, il n’y aurait point en nous de libre arbitre, et par conséquent ni 

science ni raison. » 

L’étude du réel devint ainsi, pour Léonard, un acte spirituel. Il était convaincu que la raison et l’art 

pouvait élever l’homme jusqu’à Dieu. Ainsi, il fit de la connaissance et de la création les voies d’une 

ascension vers le divin. Il exprima cette conviction, dans le Codex Arundel, folio 155r, British Library : 

«Quella scienzia è più utile della quale il frutto è più simile a quello di Dio; e così la pittura è di tal 

genere, perché essa è cosa mentale, e per conseguenza partorita da Dio. » 
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« Cette science (la peinture) est la plus utile dont le fruit ressemble le plus à celui de Dieu; et ainsi la 

peinture est de ce genre, car elle est une chose de l’esprit, et, par conséquent, engendrée par Dieu. » 

2.4. L’homme de Vitruve, une construction purement géométrique 

Avant même de concevoir son Homme de Vitruve, Léonard de Vinci avait mené un immense travail 

préparatoire. Ses carnets révèlent une accumulation de mesures, de dissections et d’observations. Il 

scrutait l’homme dans ses moindres détails anatomiques, calculait les rapports entre segments et 

confrontait la théorie à la réalité du corps. Ses dessins témoignent de d’une quête d’harmonie qui régit 

les proportions du corps humain. 

Suivant les principes énoncés par Vitruve, Léonard recopia d’abord l’énoncé du texte de l’architecte, 

dans lequel était décrit les mesures de chaque partie du corps. Il ajouta ensuite ses propres observations 

et notes, en comparant les valeurs théoriques proposées par Vitruve avec celles qu’il mesurait sur le 

corps humain.  

Pour établir sa figure, Léonard traça plusieurs segments horizontaux destinés à marquer les divisions 

principales du corps, l’un au niveau du cou, un autre à la hauteur du thorax, un autre au niveau du pubis 

et un dernier à la hauteur des genoux. Ces lignes de repère, visibles sur le dessin, servaient à mesurer la 

longueur des différentes parties du corps et à vérifier leurs rapports proportionnels.  

Ses carnets datés de 1489 à 1498 témoignent d’une réflexion entre l’anatomie, la mécanique du 

mouvement et les principes mathématiques de l’équilibre. Il constata (Anatomical Manuscript A, F 2r, 

Royal Library, Windsor Castle):  

«Il movimento delle membra è governato dalle proporzioni. » 

« Les mouvements du corps sont gouvernés par les proportions. »  

L’analyse géométrique du dessin révèle une organisation interne d’une grande précision (figure 30). 

Le choix des fractions employé par Léonard, rapporté à une base de 120 divisions, permet d’obtenir des 

rapports précis et harmonieux dans la structure du corps et de l’espace. 

 

Figure 30. Construction géométrique de l’homme de Vitruve, De Vinci 

Galerie de l’académie de Venise 
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Le positionnement des articulations principales de l’homme de Vitruve, combiné aux segments tracés 

par Léonard sur le corps, constitue les points d’ancrage d’un système géométrique. Ce dispositif obéit à 

une loi de projection qui engendre des angles droits convergeant vers des points significatifs du dessin. 

En effet, si on trace un segment depuis la main droite, placée en trois quarts et située précisément sur 

l’un des points d’intersection entre le cercle et le carré, jusqu’au centre du corps, au niveau du cou, il 

forme un angle droit avec le segment qui part du milieu du cou à l’extrémité intérieure du pied droit 

écarté (voir segments bleus).  

De même, le segment qui relie la main gauche en trois quarts, jusqu’au milieu du segment qui souligne 

le buste, forme un angle droit avec le segment qui relie le milieu du buste à l’extrémité extérieure du 

pied gauche écarté (voir segments violets).  

Par ailleurs, le segment qui part du milieu du sommet de la tête à l’extrémité de la main gauche 

horizontale, forme un angle droit avec le segment qui part de ce dernier point vers l’extrémité intérieur 

du pied gauche écarté.  Un autre angle droit se forme, en traçant un segment du sommet de la tête à 

l’extrémité extérieure du pied droit écarté (voir segments rouges).  

De façon symétrique, celui qui part du sommet de la tête jusqu’à l’extrémité de la main droite 

horizontale, forme un angle droit avec le segment du sommet de la tête à l’extrémité extérieure du pied 

droit en trois quart (voir segments verts). Enfin, les segments qui relient le sommet de la tête aux 

extrémités extérieures des pieds écartés, mis en regard de l’axe central du corps, forment deux angles 

droits égaux, qui assurent l’équilibre et la symétrie de la figure. 

Parmi les consignes énoncées par Vitruve figure celle-ci :  

« Si tu ouvres les jambes de manière à diminuer ta hauteur d’un quatorzième et que tu écartes et 

élèves les bras jusqu’à ce que le bout des doigts touche la hauteur du sommet de la tête sache que le 

centre des membres écartés se trouve au nombril et que l’espace entre les jambes forme un triangle 

équilatéral. » 

Or dans son dessin, Léonard ne suivit pas strictement cette indication, il la rectifia. Après avoir étudié 

l’anatomie de l’homme, il constata que le nombril ne se situe pas au milieu du corps. Il déplaça le centre 

au niveau du pubis. Ce léger décalage fut indispensable à la cohérence géométrique et à la fidélité 

anatomique de la figure. 

C’est à partir de ce centre que se forme naturellement le triangle équilatéral mentionné par Vitruve. 

Sa base correspond aux extrémités intérieures des pieds écartés et son sommet se situe exactement au 

centre du pubis. Le triangle n’est pas centré au milieu du corps car les jambes sont légèrement en 

mouvement. Ce décalage subtil témoigne de la dynamique du vivant. Enfin, si l’on prolonge le segment 

tracé par Léonard au niveau des genoux, un autre triangle équilatéral se forme à l’intérieur du premier. 

Ce savant équilibre, entre la rigueur géométrique et l’observation anatomique, manifeste toute la 

complexité de la démarche. Léonard connaissait intimement le corps humain qu’il avait observé et étudié 

dans le moindre détail. Il comprenait la gravité, la tension des muscles, la résistance des os et l’équilibre 

des masses. Chaque position, chaque inclinaison du tronc, chaque appui du pied correspondait à une 

réaction mesurée dans tout le corps. Si le bras se levait le poids se déplaçait, l’axe se corrigeait, la hanche 

compensait. Cette conscience du mouvement et des forces donne à son dessin une stabilité réelle, presque 

vivante.  

Dans cette correspondance constante, entre le mouvement du corps et la mesure, émerge l’armature 

invisible d’un ordre mathématique. L’ensemble de ces rapports révèle une grille géométrique sous-

jacente régie par une harmonie interne qui organise le corps en un ensemble proportionnel et équilibré. 

Une telle conception témoigne d’une ingéniosité mathématique rare. Léonard parvint à faire coïncider 

la rigueur du calcul avec la complexité du corps vivant. Il résolut simultanément un ensemble de 
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contraintes métriques, angulaires et proportionnelles, tout en unifiant dans une même structure les 

exigences de la mesure et celles de la nature. La représentation du corps de l’Homme de Vitruve devint 

ainsi une véritable démonstration géométrique. 

Par cette approche scientifique, Léonard de Vinci a résolu le problème posé par Vitruve, mais sans 

jamais en révéler la solution. Ses suiveurs, comme Bernardino Luini, copièrent ou reprirent ses carnets 

sans saisir la logique géométrique du dessin. Le Codex Huygens57, réalisé vers 1570 par le peintre 

milanais Carlo Urbino, en atteste. Ce manuscrit rassemble de nombreux dessins qui reprennent et 

commentent les études de Léonard, dont l’Homme de Vitruve lui-même (figures 31). Mais loin de 

retrouver la clarté du maître, ces copies témoignent surtout d’une recherche laborieuse et inaboutie, signe 

que ses imitateurs échouèrent à saisir pleinement la solution que Léonard avait donné. 

  

Figures 31. Codex Huygens, carlo Urbino, Fol.6 et 7, 1560/1570 

3. Le projet sculptural du cheval idéal de Léonard de Vinci 

3.1. Contexte historique  

Léonard de Vinci conçut son Homme de Vitruve, à Milan, lorsqu’il était au service du duc Ludovico 

Sforza. C’est dans ce milieu intellectuel et artistique d’une richesse exceptionnelle qu’il entreprit ses 

recherches sur les proportions du corps humain. C’est précisément au sein de cette période d’activité 

scientifique et artistique intense que Léonard entra en contact avec le mathématicien et moine franciscain 

Luca Pacioli. Vers 1496, ce dernier, fut appelé à Milan par Ludovico Sforza58. Il y rencontra Léonard de 

Vinci, déjà actif à la cour depuis plus d’une décennie. Les deux hommes se lièrent d’amitié et 

collaborèrent étroitement entre 1496 et 1499. Les sources contemporaines rapportent qu’ils résidèrent 

dans la même maison59, située à proximité de Santa Maria delle Grazie, là même où Léonard peignit La 

Cène. Cette proximité favorisa une collaboration intellectuelle soutenue, centrée sur l’étude des rapports 

de proportion, de la perspective et de la géométrie. 

En 1498, Pacioli rédigea son grand traité De Divina Proportione, consacré à la proportion divine, 

c’est-à-dire au nombre d’or. Il y affirma: 

«Questa proporzione noi chiamiamo divina, perché simile a Dio ; 

e nelle opere di Dio si trova, e principalmente nel corpo dell’uomo, 

che si può dire modello e misura d’ogni cosa creata.» 

« Nous appelons cette proportion divine, parce qu’elle est semblable à Dieu ; on la trouve dans toutes 

les œuvres de Dieu, et principalement dans le corps de l’homme, que l’on peut considérer comme le 

modèle et la mesure de toute chose créée. » 

Léonard illustra personnellement le traité en réalisant les polyèdres réguliers et semi-réguliers, 

dessinés avec une rigueur géométrique remarquable et destinés à démontrer visuellement la construction 

du nombre d’or29. Dans sa préface, Pacioli le remercia explicitement: 
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«A Leonardo da Vinci, excellentissimo pittore et perspectivo, 

devo le mirabili figure che adornano questo libro.» 

« À Léonard de Vinci, peintre et perspectiviste d’excellence, je dois les admirables figures qui ornent 

cet ouvrage. » 

Cette collaboration marqua profondément les deux hommes. Pacioli considérait Léonard comme « il 

più gran maestro della geometria applicata all’arte »59, le plus grand maître de la géométrie appliquée à 

l’art. Il est vraisemblable que le choix de Léonard pour illustrer son ouvrage ne fut pas fortuit, Le génie 

toscan poursuivait, depuis plusieurs années déjà, une réflexion parallèle sur la proportion du corps 

humain, dont l’Homme de Vitruve constitue la synthèse. Ce célèbre dessin, réalisé vers 1490–1492, 

s’inscrivait dans une démarche où la figure humaine devenait le modèle même de la mesure et de 

l’harmonie universelle. Léonard et Pacioli partageaient ainsi cette vision commune d’un ordre rationnel, 

inhérent à toute forme de perfection. 

Cette affinité entre Léonard et Pacioli s’enracina également dans la tradition intellectuelle 

franciscaine. Léonard fit lui-même allusion, dans le Codex Arundel, à deux figures majeures de cette 

tradition. Dans le codex Arundel, 71v, il mentionna : « Rugieri Bacon fatto in istampa», qui correspond 

à Roger Bacon60, philosophe, savant et alchimiste anglais du XIIIème siècle, considéré comme l’un des 

précurseurs de la méthode expérimentale.  Il cita également « Cerca in Firenze della Ramondina » codex 

Arundel, 192v, qui renvoie à Raymond Lulle, théologien et missionnaire catalan. Tous deux 

appartenaient à l’ordre franciscain et cherchaient à unir la foi, la raison et la science dans la 

compréhension du monde. Bacon prôna une connaissance fondée sur l’observation et l’expérience, tandis 

que Lulle conçut, dans son Ars magna61, une logique géométrique et spirituelle destinée à révéler l’ordre 

divin de la création. 

Ces références témoignent de l’intérêt que Léonard portait à cette pensée où la mesure et la géométrie 

sont perçues comme des voies d’accès à la vérité. Dans ce contexte, sa proximité avec le moine 

franciscain Luca Pacioli et son insertion dans les milieux religieux milanais, dont témoigne notamment 

la commande de la Vierge aux Rochers62 pour la confrérie franciscaine de l’Immaculée Conception, le 

rattachent pleinement à cette tradition intellectuelle. 

De plus, Léonard partageait avec les disciples de Saint François le goût de la simplicité et le 

détachement des richesses. Il ironisait souvent sur la vanité du luxe et la futilité du pouvoir, leur opposant 

la sobriété, la contemplation et le travail de l’esprit. Pour lui (Codex Arundel, folio 155 recto, Bristish 

Library):  

«Il più nobile diletto è la gioia dell’intendere. »  

« Le plus noble plaisir est la joie de comprendre. »  

Dans le Codex Trivulazianus, f. 86r, il partagea une note sur la vanité de l’homme : 

«O vana speranza, quanti ti seguono e quanti ti perdono! » 

(Ô vaine espérance, combien te suivent et combien se perdent à ta suite !) 

Et ailleurs, sur le même feuillet : 

«O misera umanità, di quante cose ti rendi schiava per vile guadagno! » 

« Ô misérable humanité, de combien de choses te rends-tu esclave pour un vil profit ! » 

À cette même époque, Léonard travaillait à son projet du cheval idéal, destiné à honorer la mémoire 

du père du Duc Ludovico Sforza63,64, projet auquel il appliqua les mêmes principes d’équilibre et de 
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proportions que ceux élaborés dans la conception de l’homme de Vitruve. Il déclara, dans le Codex 

Madrid II, 2r:  

«Farò un cavallo di bronzo, grande, che non fu mai fatto di simile grandezza, e di proporzioni 

perfette.» 

« Je ferai un cheval de bronze, grand, comme jamais il n’en fut fait de semblable grandeur, et de 

proportions parfaites. » 

3.2. La recherche de perfection par le dessin 

Commandé au début des années 1480, ce premier projet équestre occupa Léonard pendant plus d’une 

décennie. Après de longues années d’études, il réalisa une maquette en plâtre, présentée en 1494 à 

l’occasion du mariage de Bianca Maria Sforza avec Maximilien du Saint-Empire.  À la vue de cette 

maquette, le poète Piattino Piatti, ami du duc, composa un poème en hommage à cette œuvre65. Il 

compara Léonard aux grands sculpteurs et peintres de l’antiquité, soulignant combien cette maquette 

représentait une recherche d’équilibre et de proportions parfaites, digne des idéaux antiques. 

Afin de parvenir à concevoir un cheval, avec l’objectif de dépasser les grands modèles qui l’avaient 

précédé, du Gattamelata de Donatello au Colleone de Verrocchio, Léonard remplit ses carnets 

d’observations, de croquis et de calculs, qui constituaient un véritable laboratoire de recherches66. 

Chaque dessin visait à définir, avec une précision extrême, une partie anatomique de l’animal. Léonard 

avait pour ambition de combiner les éléments les plus remarquables observés chez différents chevaux67, 

afin de créer un cheval à la fois réel et imaginaire.  

La profusion et la diversité de ses études témoignent de l’ampleur de cette entreprise graphique. 

Léonard multiplia les vues sous tous les angles et expérimenta divers matériaux, fusain, pierre noire, 

craie rouge, pour explorer les volumes, la dynamique musculaire et les effets de la lumière. Cette 

recherche aboutit à un dessin exceptionnel à la craie rouge identifié comme la version la plus achevée 

du cheval idéal68 (figure 32).  

 

Figure 32. Cheval Idéal, recto, 45,3 cm x 27,5 cm 

Craie rouge, Collection privée 

De Vinci 



© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                                               Page | 35 

Au verso de ce dessin se trouve une autre étude qui représente un cheval exécuté de manière plus libre 

et spontanée (figure 33). Il s’agit d’une esquisse, probablement réalisée d’après des observations directes 

dans les écuries, comme dans plusieurs études de Léonard, conservées aujourd’hui à la Royal Collection 

Trust à Windsor (figures 34). Léonard réutilisait fréquemment ses feuilles, dessinant au recto comme au 

verso, ce qui témoigne d’un travail d’observation constant69. Il avait également pour habitude de couper 

ses feuilles. On constate qu’une partie de la tête du cheval est manquante, comme sur les dessins ci-

dessous de la Royale Collection Trust.  

 

Figure 33. Verso cheval idéal 

 

Figures 34. Études de chevaux, Codex Windsor, 

 Rcin 912309, Rcin 912312 

La technique employée sur le dessin du Cheval idéal est rigoureusement identique à celle observée, 

dans plusieurs études de Léonard, conservées à la Royal Collection Trust. Dans l’étude de l’enfant 

(figure 35), celle du chien (figure 36), de l’homme nu de dos (figure 37) et dans une étude de cheval 

(figure 38), Léonard utilisa la craie rouge, un médium qu’il maîtrisait avec une précision exceptionnelle, 

pour modeler les formes avec souplesse et leur conférer une présence physique saisissante. Le contour, 

posé d’un geste continu et fluide, varie selon la lumière, appuyé dans l’ombre et allégé dans les zones 

éclairées. C’est par cette modulation du trait que s’établit un jeu d’ombre et de lumière où le volume naît 

de la respiration du tracé lui-même. Ce contour définit la structure optique et anatomique du sujet, 

autrement dit, la charpente visuelle du corps et son orientation dans l’espace. 

 

Figure 35. Étude d’un enfant  

 

Figure 36. Étude de chien 
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Figure 37. Homme nu de dos 

 

Figure 38. Étude de cheval  

Sur les dessins ci-dessus, comme sur l’étude du cheval idéal, le modelé est ensuite construit par un 

réseau de hachures obliques et courbes, disposé en plusieurs passages successifs (figures 39). Leur 

orientation dépend du relief anatomique, du mouvement du corps et de la direction de la lumière. Ces 

trames, qui attestent de la dynamique interne du modèle, expriment la tension des muscles, la gravité des 

masses et la continuité des plans. Les faisceaux se resserrent dans les zones de pression et s’ouvrent dans 

les zones de détente, en fonction de la logique fonctionnelle du corps. Dans ces études, Léonard ajusta 

la pression du trait, plus dense sur les saillies osseuses, plus légère sur les chairs. Il intervint également 

parfois par un léger estompage, obtenu au doigt ou à l’estompe, pour adoucir les transitions sans effacer 

le grain du support. Ce procédé crée un modelé diffus et précis fondé sur la variation de la densité du 

pigment. 

 

Figures 39. Détails du modelé et du réseau de hachures dans les études à la craie rouge de Léonard de Vinci 

Dans l’étude du cheval idéal, les réserves lumineuses sont distribuées avec une exactitude 

remarquable (figures 32,39). Elles correspondent aux zones où la lumière glisse sur le relief, le garrot, 

la croupe, la poitrine, le rachis, et participent à l’équilibre général de la forme. Leur rôle est de laisser 

respirer la matière. Léonard exploita le fond du support comme une source lumineuse à part entière, il 

joua de la teinte et de la texture du papier pour créer une lumière interne qui semble émaner du corps 

lui-même. Cette technique donne au dessin une présence vibrante, où la lumière devient un moyen de 
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construction autant que de perception. C’est l’un des principes les plus caractéristiques de Léonard de 

Vinci, qu’aucun disciple n’a su égaler. 

La tête de cheval (figure 38) conservée à la Royal Collection Trust (codex Windsor) s’inscrit 

exactement dans cette méthode. Attribuée à Léonard de Vinci depuis toujours, elle provient du fonds de 

Francesco Melzi, héritier direct des dessins du maître, passé ensuite au sculpteur Pompeo Leoni, puis à 

Thomas Howard, comte d’Arundel, avant d’être acquise par le roi Charles II, vers 1690. Cette chaîne de 

provenance, parfaitement documentée, rattache la feuille au corpus léonardien. Ce n’est qu’au XXème 

siècle, dans les années 1930, que l’historien Kenneth Clark proposa une réattribution à Cesare da Sesto, 

fondée sur l’inclinaison droite des hachures. Une telle hypothèse, purement formelle, s’inscrit dans une 

tendance critique de l’époque qui visait à réduire le corpus autographe de Léonard, en attribuant à ses 

élèves une partie importante de ses études. De nombreuses feuilles manifestement autographes ont ainsi 

été écartées injustement, ce qui affaibli la compréhension de l’œuvre graphique de Léonard70. Or, 

replacée dans le contexte de l’activité de Léonard, la Tête de cheval (figure 38) trouve naturellement sa 

place.  

Léonard de Vinci a consacré près de quinze années à l’étude du cheval, depuis les recherches pour le 

monument Sforza jusqu’aux projets pour le monument Trivulzio, multipliant les analyses anatomiques 

et mécaniques du mouvement. Il avait même entrepris la rédaction d’un traité complet dédié à l’animal, 

destiné à accompagner le projet du cheval monumental. Cet ouvrage, mentionné par ses contemporains 

et évoqué dans ses notes, a malheureusement été perdu66. Il ne subsiste que par quelques feuillets 

dispersés et des études préparatoires conservées à Windsor. 

Après la mort de Léonard de Vinci en 1519, son élève Francesco Melzi emporta, en Lombardie, la 

plupart des carnets et dessins de son maître71. Ces milliers de feuillets, contenaient des études 

d’anatomie, de mécanique, de géométrie et de proportions, qui furent jalousement conservés dans la villa 

de Melzi, à Vaprio d’Adda, jusqu’à sa mort, vers 1570, puis peu à peu dispersés par ses descendants, qui 

n’en comprenaient ni la valeur, ni la portée scientifique. 

Une grande partie passa entre les mains du sculpteur milanais Pompeo Leoni72, au service du roi 

d’Espagne Philippe II, qui remania le tout, en classant, découpant et collant les pages pour former de 

vastes recueils, aujourd’hui connus sous le nom de Codex Atlanticus, Codex Madrid ou encore Codex 

Windsor. Cette opération provoqua aussi la dispersion physique et thématique des feuillets, dont 

beaucoup furent vendus ou donnés à des collectionneurs italiens et étrangers. 

Carlo Pedretti souligne d’ailleurs que « certaines études de chevaux à la sanguine, mentionnées dans 

des inventaires anciens, ont dû être détachées des volumes de Leoni et sont aujourd’hui perdues ou non 

localisées73 ». Ces études perdues figurent dans les inventaires rédigés après la mort de Leoni, conservés 

dans les collections de la Bibliothèque Ambrosienne à Milan et du palais de l’Escorial74. Plusieurs 

notices y mentionnent des « dessins de chevaux »et « études de membres en mouvement », qui auraient 

circulé indépendamment des volumes, avant de passer dans des collections privées italiennes, puis en 

Angleterre69. 

Au XVIIème siècle, le grand collectionneur anglais Thomas Howard, 14ᵉ comte d’Arundel, réunit à 

Londres l’une des plus importantes collections d’art d’Europe75. Celle-ci comprenait notamment de 

nombreux dessins de Léonard de Vinci. Le diariste, John Evelyn76, nota dans ses carnets : « des dessins 

et manuscrits de Léonard de Vinci remplis d’études de mouvement, d’anatomie et de mécanique ». Dans 

une lettre contemporaine, William Petty évoqua également77 : « des dessins à la craie rouge représentant 

les parties du corps et les dispositifs du mouvement. »  

Après la mort du comte d’Arundel en 1646, ses héritiers commencèrent à vendre des lots entiers de 

la collection, certains manuscrits rejoignirent la Royal Collection, comme le Codex Arundel, aujourd’hui 

à la British Library, et plusieurs dessins conservés à Windsor, tandis que d’autres lots partirent sur le 

marché londonien78. Evelyn mentionna la visite de « beaucoup de visiteurs originaires des anciens Pays-
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Bas », venus voir ou acheter des dessins italiens. Au siècle suivant, des catalogues de ventes d’art, à 

Londres, signalèrent encore des feuilles italiennes « provenant de la collection du défunt comte 

d’Arundel » acquises par des négociants d’Amsterdam et d’Anvers. Les historiens Francis Haskell et 

Nicholas Penny résumèrent cette circulation79: « Une partie des dessins de la collection Arundel est 

passée entre les mains de marchands hollandais et flamands actifs à Londres, notamment la famille 

Uylenburgh80, qui commerçait entre Amsterdam, Anvers et Bruxelles. » 

Le spécialiste Carlo Pedretti, qui a consacré une grande partie de sa vie à l’étude des manuscrits 

léonardiens, rappelait que cette dispersion « fit éclater la cohérence de l’œuvre graphique de Léonard, 

ce qui relevait d’un même traité se retrouva réparti entre des pays et des siècles différents ». Il souligna 

aussi que l’absence de provenance ne doit pas faire douter de l’authenticité d’une feuille, car beaucoup 

de dessins autographes, connus aujourd’hui, notamment à Turin, Florence ou Windsor, ont refait surface 

après plusieurs siècles d’oubli et peuvent aujourd’hui encore réapparaître dans des collections privées69. 

L’examen de l’ensemble du corpus actuel léonardien montre en effet une abondance d’esquisses et 

d’études analytiques sur le thème du cheval, souvent tracées à la plume ou à la pierre noire, destinées à 

explorer les proportions, la mécanique du mouvement ou la structure musculaire. En revanche, les études 

pleinement construites à la craie rouge sont exceptionnellement rares.  Pourtant, cette étape s’inscrit 

logiquement dans la continuité de sa pratique. Léonard a expérimenté successivement chaque médium 

pour en exploiter les propriétés propres81. La craie rouge, par sa souplesse et sa capacité à unifier le trait 

et la lumière, lui permettait d’aborder la question du modelé avec une précision que n’offrent ni la plume 

ni la pierre noire.  

Cette approche expérimentale se manifeste notamment dans un dessin conservé à la Royal Collection 

Trust, qui représente le corps d’un cheval de profil, exécuté à la pointe métallique sur papier préparé 

bleu avec rehauts de blanc (figure 40). Dans cette étude, Léonard chercha à rendre les volumes par le 

seul contraste du métal et du rehaut, mais le résultat demeure limité, ce médium ne lui permit pas 

d’obtenir la densité ni la fluidité du modelé qu’il recherchait. Ce passage vers la craie rouge s’impose 

ainsi comme une étape nécessaire dans le prolongement naturel de ses recherches, comme en témoignent 

ses études du corps humain, où chaque médium est mis au service d’une analyse spécifique. Il indiqua 

dans son traité de la peinture31: 

«I pittori debbono avere conoscenza dei colori e de’ loro misti, e de’ varii modi del disegno, sì col 

carbon nero come col gesso o pietra rossa. » 

« Les peintres doivent connaître les couleurs et leurs mélanges, ainsi que les divers moyens du dessin, 

au charbon noir, à la craie ou à la pierre rouge. » 

   

Figure 40. Étude du corps du cheval de profil, Rcin 912289 

De Vinci, Royal collection Trust 
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L’attention extrême que Léonard consacra à la représentation du cheval, et les longues séries d’études 

qu’il lui dédie, s’expliquent non seulement par son intérêt scientifique et son véritable attachement à 

l’animal, mais aussi par le rôle majeur que le cheval occupa dans la culture de son temps.  

À la Renaissance, le cheval joua un rôle majeur dans la culture visuelle et politique67. Dans les grandes 

commandes équestres, comme celles de Ludovico le More, le cheval incarnait la puissance militaire, la 

noblesse et le rang de son cavalier. L’animal est pensé comme le prolongement du prince, sa force et sa 

prestance reflètent celles de son maître. 

Les chevaux de Léonard de Vinci sont imposants, avec des encolures puissantes. Un détail fréquent 

est la queue coupée ou raccourcie. La caudectomie fut une pratique courante, à la Renaissance, pour 

éviter qu’elle ne gêne le cavalier pendant les combats ou la chasse (figures 41).  

 

Cheval idéal, collection privée 

 

Étude de chevaux, Royal Library 

Encolure imposante des chevaux de Léonard de Vinci 

 

Étude de chevaux 

Musée du Louvre 

 

Caudectomie 

 

Étude de chevaux 

British Library 

Figures 41 

Le dessin du cheval idéal, qui peut être considéré comme une véritable pré-sculpture, correspond à 

une étape avancée. À ce titre, il apporte des informations précieuses sur la manière dont Léonard 

envisage la sculpture, sa monumentalité et surtout sa conception spatiale. Léonard y met en œuvre une 

perspective parfaitement maîtrisée à travers une organisation interne précise qui confère à la composition 

une réelle profondeur tridimensionnelle. Le socle esquissé sur lequel repose le cheval est légèrement 

incliné et vue en plongé, ce qui place le spectateur en contrebas et accentue la sensation de hauteur 

(figure 42). Ce dispositif permet à la figure équestre de dominer visuellement, comme elle le ferait dans 

l’espace public depuis son piédestal. 
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Ce socle a été esquissé, à l’aide de hachures en zigzag, similaires à celles du portrait de Cesare Borgia 

(figure 43). Ce procédé rapide lui permit de couvrir des zones ou d’indiquer des ombres tout en 

dissimulant parfois des esquisses antérieures, les feuilles étant souvent réemployées. 

 

Figure 42. Cheval idéal 

Collection Privée 

De Vinci 

 

Figure 43. Étude portrait de Cesare Borgia 

Inv.15573, Bibliothèque Royale de Turin 

De Vinci 

3.3. La géométrie du vivant, de l’homme à l’animal 

Léonard hérita d’un contexte visuel marqué par la tradition du cheval monumental mais il développa 

une vision personnelle, fondée sur une approche anatomique beaucoup plus poussée, issue de 

l’observation directe et de l’étude scientifique. Il y transposa les mêmes principes qu’il appliquait au 

corps humain.  

Comme pour l’Homme de Vitruve, Léonard commença par construire une structure géométrique 

précise, dans laquelle le corps de l’animal s’inscrit dans un réseau où chaque partie est déterminée en 

fonction de rapports de proportion rigoureux. Cette méthode se manifeste dans un dessin consacré à 

l’étude d’un cheval, entièrement gouverné par des rapports géométriques internes (figure 44). Chaque 

segment est mis en correspondance avec des proportions mathématiques précises qui soulignent que la 

figure résulte d’une construction rationnelle avant toute intervention artistique.  

 

Figure 44. Étude de cheval, Codex Madrid II, folio 151v. 

Les arrière-trains des chevaux de Léonard s’organisent selon une structure circulaire dont le centre 

correspond à l’articulation de la hanche (figure 45). Ce dispositif géométrique reflète le fonctionnement 

réel du membre postérieur, la propulsion résulte d’un mouvement de rotation autour de ce point. Le tracé 

circulaire qui relie ainsi la hanche, la cuisse et le jarret révèle la dynamique interne du mouvement. 
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Cheval Idéal, collection privée 

 

Étude de chevaux, Bibliothèque Royale de Turin 

Figures 45 

L’objectif de Léonard était de révéler l’existence d’une harmonie universelle, commune à toutes les 

formes du vivant, qu’il s’agisse du corps humain, du monde animal, de la musique ou de la nature. Il 

appliqua les mêmes principes géométriques et les mêmes lois de proportions au cheval qu’à l’homme de 

Vitruve. La superposition des deux figures (figure 46), bien que leurs mesures absolues diffèrent, 

révèlent qu’ils partagent la même proportionnalité. Le canevas de lignes tracées par Léonard sur 

l’homme de Vitruve sert de règle aux deux corps. Chaque segment rencontre un repère anatomique du 

cheval, comme si une seule grille mathématique ordonnait l’anatomie de ces deux êtres. Cette 

correspondance rappelle le principe énoncé par Vitruve selon lequel « l’homme est la mesure de toutes 

choses40. » Le corps humain devient ici l’étalon à partir duquel Léonard évalue et harmonise le corps du 

cheval. 

 

Figure 46. Juxtaposition en transparence du cheval idéal et de l’homme de Vitruve 

En effet, la hauteur de la base du cou de l’homme coïncide avec le garrot du cheval. La ligne du torse 

rejoint la croupe, la ligne du pubis correspond à la jonction des deux membres antérieurs, et la ligne des 

genoux tombe au niveau du carpe de la patte fléchie. Le centre du cheval, c’est-à-dire la moitié de sa 
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hauteur, se situe à la hauteur du nombril de l’homme. Il correspond également au niveau du pubis de 

l’animal, soit le milieu de son corps comme sur l’homme de Vitruve (figure 46,47).  

 

Figure 47. Dessin anatomique équin, position du Pubis 

De Nombreuses études de Léonard, sur les proportions humaines et équines, se retrouvent sur les 

mêmes feuillets, ce qui atteste d’une démarche comparative (figures 7, 48). En reprenant l’idée formulée 

par Aristote34, selon laquelle les jambes de l’homme et celles du cheval présentent une structure 

analogue, le genou de la jambe droite écartée de l’homme croise celui de la jambe avant droite du cheval, 

tandis que le pied gauche joint de l’homme s’aligne avec le sabot arrière gauche fléchi de l’animal.  

 

Recto 

 

Verso 

Figures 48. RCIN 912304, Windsor collection, Da Vinci 

On the same sheet, studies of equine and human proportions 

Ainsi, à travers cette conception anthropométrique, issue du modèle vitruvien, Léonard illustre l’idée 

que les rapports internes du corps humain incarnent l’ordre rationnel du monde et peuvent être appliqués 

à toute construction, qu’elle soit architecturale, mécanique ou artistique.  

Ce dessin porte aussi l’empreinte de la rigueur anatomique de Léonard. Le cheval est représenté en 

mouvement, une patte avant levée et l’autre parfaitement tendue, tandis que la tête se tourne vers le haut 

à droite. En effet, chez le cheval, les vertèbres cervicales ne permettent pas un redressement vertical pur 

du crâne. Pour lever la tête, le cheval doit combiner une extension et une rotation latérale du cou. Ce 

mouvement entraîne une mise en tension de tout le corps, qui fait apparaître le long de la jambe tendue 

la veine saphène médiale, saillante sous la peau (figure 49). Ce détail anatomique, rendu avec une 

exactitude remarquable, atteste de la rigueur scientifique de Léonard. La tension musculaire et la ligne 

ascendante formée par le cou et la tête définissent la hauteur maximale mesurable du cheval, sans rompre 
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l’équilibre du mouvement. Léonard restitue ainsi, avec la précision d’un anatomiste, les tensions et les 

structures internes de l’animal.  

Toutefois, ce cheval demeure une création idéalisée. Léonard, tout en s’appuyant sur l’observation 

rigoureuse du réel, ajuste certains détails pour en faire une œuvre sculpturale. C’est pourquoi, la courbure 

du sabot est relevée pour assurer la stabilité de l’ensemble, selon une tradition équestre héritée de 

l’Antiquité et reprise par les maîtres de la Renaissance. 

 

Figure 49. Cheval idéal, veine saphène médiale 

3.4. La maîtrise de la matière et du mouvement 

Dans la conception de ce projet sculptural d’envergure, Léonard associa à la science des proportions 

à une véritable réflexion d’ingénierie, où la mécanique du corps animal devient le modèle d’une 

architecture vivante, stable et rationnelle. Conçu selon une planification géométrique et mécanique 

rigoureuse, cette entreprise visait la solidité structurelle, la maîtrise des masses et l’équilibre général de 

la composition. Léonard organisa ainsi l’ensemble autour d’une trame orthogonale, qui divise la surface 

en modules proportionnels, et définit des axes de référence, qui servent à la mise en place des volumes 

et à l’orientation des forces internes. 

Dans ses études sur les proportions équines (figure 50), Léonard établit que l’envergure de la tête et 

du cou du cheval représente environ 30% de son corps. Cette répartition proportionnelle, qui se retrouve 

dans l’étude du cheval idéal, sert de fondement à la conception du corps, tel un système de force en 

équilibre régi par les lois de la mécanique statique. Ainsi, la croupe et les postérieurs, qui assurent la 

résistance, occupent 60%. Les 10% restant constitue une zone de transition mécanique, qui absorbe les 

efforts opposés, relie les masses et assure la continuité des contraintes entre la traction avant et la poussée 

arrière. Le garrot joue le rôle de pivot.  

Ce rapport de 1/2, entre les masses avant et arrière, correspond à un principe mécanique, observé dans 

les systèmes de levier et de répartition des charges. Une faible force, appliquée sur un bras court, peut 

équilibrer une masse plus importante sur un bras deux fois plus long, ce qui garantit ainsi un équilibre 

stable. Sur le cheval idéal, la tension du cou (traction) qui s’oppose à la poussée des 

postérieurs (compression), génère un moment mécanique stable et une compensation 

dynamique continue.  
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Figure 50. Étude sur les proportions du cheval, 

Rcin 912319, Codex Windsor 

De cette organisation rationnelle découle, dans l’étude du cheval idéal, une véritable charpente 

géométrique, constituée de deux triangles rectangles égaux, qui structurent la composition (figure 51). 

Le premier relie la tête à la patte d’appui antérieure, le second, le garrot à la croupe et aux postérieurs. 

Leurs angles droits verrouillent la direction des charges, et leurs hypoténuses convergent vers un point 

gravitationnel unique, situé dans la partie inférieure de l’axe central vertical. Ce nœud statique concentre 

les vecteurs de traction, de compression et de réaction. Toutes les lignes principales, le cou, le dos, les 

membres et la croupe, y aboutissent. Ce point agit comme un pivot de redistribution des efforts 

mécaniques vers les appuis. Par cette convergence, les forces s’annulent partiellement, celles qui tirent 

vers l’avant et celles qui poussent vers l’arrière, se compensent. Ce jeu d’équilibre permet au cheval de 

conserver une posture stable et harmonieuse. 

 

Figure 51. Charpente géométrique, cheval idéal 

L’arrière-train, conçu selon une géométrie circulaire, complète cette structure. La croupe, qui forme 

un arc de rotation centré sur l’articulation de la hanche, agit comme un levier de propulsion. Cette 

courbure transmet les efforts linéaires du dos, sous forme de mouvement rotatif, qui assure la poussée 

vers l’avant. En termes mécaniques, cette zone fonctionne comme une poulie naturelle, qui stabilise la 
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masse postérieure tout en compensant les charges générées par la tension du cou. L’ensemble du corps 

se comporte ainsi comme une poutre triangulée vivante, organisée autour d’un point gravitationnel, et 

soutenue par une base circulaire de rotation. Cette conception témoigne de l’assimilation par Léonard de 

Vinci des travaux d’Archimède81. Ainsi, au-delà de la représentation équestre, ce dessin révèle une 

pensée d’ingénieur pleinement intégrée à la création artistique. Chaque ligne répond à une fonction 

structurelle précise, ce qui fait de cette étude une véritable modélisation de la statique. Elle préfigure les 

contraintes techniques de la future fonte en bronze. Cette Conception rejoint les principes mécaniques 

formulées par Léonard83 dans le Codex Madrid I, F 10v :  

« Ogni peso che ha il suo centro di gravità sopra il suo sostegno non cade, ma quando lo passa cade, 

e quanto più lo passa tanto più presto cade. » 

« Tout poids dont le centre de gravité se trouve au-dessus de son appui ne tombe pas ; mais dès qu’il 

le dépasse, il tombe, et plus il le dépasse, plus il tombe vite. » 

4. L’Anatomie de la Nature 

Entre 1482 et 1499, Léonard réalisa de nombreuses études anatomiques et mécaniques, destinées à 

concevoir un cheval monumental en bronze, pour le duc Francesco Sforza. Ces recherches, fondées sur 

la géométrie, la mécanique, l’ingénierie, l’anatomie et la physique du mouvement, témoignaient déjà de 

sa volonté d’unir la science à l’art. Après la chute du duché de Milan en 1499, Léonard poursuivit ses 

études sur le cheval idéal, qu’il perfectionna au fil de ses découvertes dans les domaines de la statique et 

de la mécanique appliquées. 

Le dessin du cheval idéal marque une étape décisive dans l’évolution de son travail. Vers 150884, 

Léonard appliqua au cheval de Trivulzio une conception plus dynamique, tout en reprenant les principes 

anatomiques, mécaniques et géométriques élaborés deux décennies plus tôt pour le cheval de Sforza. 

Resté inachevé, ce projet témoigne d’une approche plus mûre, qui prolonge les recherches menées pour 

le monument du duc de Milan. 

Afin de se consacrer pleinement à ce nouveau projet sculptural, Léonard interrompit la réalisation 

d’une œuvre religieuse (la Vierge, Sainte Anne, l’Enfant Jésus et saint Jean-Baptiste), commencée 

quelques années plus tôt, vers 1501-150385, à Florence. Mais à la mort du maréchal Trivulzio, et face à 

l’instabilité politique milanaise, l’entreprise fut abandonnée. Léonard revint alors à ses recherches sur la 

Vierge et Sainte Anne, vers 1510/1513.  

L'imagerie scientifique, en ultraviolet, réalisée au revers du cheval idéal atteste de cette période de 

transition artistique.  Une esquisse de la Vierge, qui correspond au dessin conservé au Louvre (figures 

54, 55), apparaît. Si elle devient visible sous ultraviolet mais demeure invisible en infrarouge, c’est en 

raison de la présence d’oxyde de fer dans le pigment. Les analyses effectuées, par l’Université Pierre et 

Marie Curie (UPMC/CNRS, ISTEP) ont en effet confirmé une forte concentration en oxyde de fer dans 

la composition du matériau, identifiée comme de l’hématite rouge, fréquemment employée par Léonard. 

Ce composé absorbe fortement le rayonnement infrarouge, tandis qu’il réagit à la lumière ultraviolette 

par une légère fluorescence rougeâtre, qui permet de rendre le dessin perceptible86. Ce phénomène a été 

signalé par le scientifique et conservateur italien, Antonino Consentino87. Il est d’autant plus 

remarquable de constater que le panneau final, conservé au Louvre, (figure 56) présente en imagerie 

infrarouge, une tête de cheval (figure 57), qui témoigne du passage de la conception du cheval Trivulzio 

à l’élaboration de la peinture religieuse.  

Ces indices matériels et scientifiques contribuent à replacer, avec une précision nouvelle, les 

différentes étapes du travail de Léonard et la chronologie de ses recherches. Ils témoignent de la 

contemporanéité de ses études, menées de front dans des domaines aussi divers que la sculpture, la 

peinture, la mécanique et la cartographie. 
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Dessin sous-jacent de la Vierge 

Réflectographie UV au dos du cheval idéal 

 

Mise en évidence du dessin sous-jacent de la Vierge 

Figure 54 

 

Figure 55. Dessin préparatoire « La Vierge, Sainte Anne et l’enfant » 

 

Figure 56. Sainte-Anne, la Vierge et l’enfant Jésus 

De Vinci 

 

Figure 57. Mise en évidence du dessin sous-jacent 

De Vinci 

Au début du XVIᵉ siècle, alors qu’il venait de regagner Florence, après son service auprès de César 

Borgia, duc de Romagne, Léonard mit ses compétences d’ingénieur et de cartographe au service de la 
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République florentine, qui lui confia l’étude du cours de l’Arno et de ses dérivations. Cette mission 

coïncida avec la première phase de travail sur « La Vierge et Sainte Anne ».  

À Florence, Léonard retrouva une cité engagée dans de vastes projets d’ingénierie hydraulique. Sous 

le gonfalonier Piero Soderini et le secrétaire Niccolò Machiavel, la République florentine envisageait de 

détourner le cours de l’Arno afin de relier la ville à la mer et d’affaiblir la puissance de Pise. Dès l’été 

1503, une lettre de Machiavel mentionna explicitement sa mission d’étude du fleuve et de ses dérivations 

possibles88. 

Entre 1503 et 1504, il réalisa plusieurs cartes de la Toscane et de la vallée de l’Arno, aujourd’hui 

conservées à Windsor (figures 58). Ces cartes, de grandes dimensions, furent exécutées à la plume, à 

l’encre, et rehaussées de lavis colorés. Leur support est un papier de fort grammage, épais et résistant, 

qui correspond aux papiers administratifs de qualité, très différents de ceux employés dans les ateliers 

d’artistes.  

 

Carte de la Vallée d’Arno, 27,5cm x 40,1cm 

Rcin 912683, Royal Collection Trust, Da Vinci 

 

Carte rivières et montagnes, centre d’Italie, 

 31,7cm x 44,9cm 

Rcin 912277, Royal Collection Trust, Da Vinci 

Figures 58 

L’analyse du papier de l’étude du Cheval idéal, réalisé par Stefano Fortunati, spécialiste des 

documents anciens, en collaboration avec Silvio Balloni, conservateur des archives Ginori Lisci à 

Florence, a révélé qu’il s’agissait d’un papier administratif du même type que celui utilisé dans les 

chancelleries, les registres, les livres comptables et les études notariales pour la rédaction des actes 

officiels. De plus, le format de la feuille (45,3 × 27,5 cm) correspond étroitement à celui des grandes 

cartes topographiques de Windsor (figures 58).  

L’emploi de ces grandes feuilles notariales, capables d’absorber les lavis colorés et de supporter les 

reprises à la plume, répondait parfaitement aux exigences techniques de la cartographie ainsi que pour 

ses recherches anatomiques et ses dessins préparatoires à la craie rouge. Sa surface, légèrement 

granuleuse et sa densité, permettait une adhérence fine du pigment, qui favorisait les effets de modelé et 

les dégradés subtils qu’il recherchait dans ses études de volumes et de drapés. Ce papier robuste, conçu 

pour durer, offrait ainsi à Léonard un support idéal pour ses travaux à la fois scientifiques et graphiques. 

Ce type de papier, dont plusieurs feuilles utilisées par Léonard portent des filigranes attribuables aux 

moulins de Fabriano et plus rarement de Foligno89, correspond exactement à la production de haute 

qualité qui circulait en Toscane.  

 Par ailleurs, le fait que ce papier soit du même type que celui utilisé dans les registres et les actes 

officiels donne un relief particulier à la présence, à Florence, du père de Léonard, Ser Piero da Vinci, 

notaire de la République, décédé 1504, au moment où Léonard travaillait à ses cartes et à ses grands 

projets picturaux90. 



© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                                               Page | 48 

Les cartographies de Léonard présentent une exactitude topographique vérifiée par les géographes 

modernes. Les distances et les orientations sont représentées d’une précision étonnante pour l’époque, 

obtenues à la main et sans aucun des instruments de mesure modernes. 

Léonard parvint à restituer la dynamique du relief, des cours d’eau et des vents, transformant la carte 

en une véritable anatomie vivante du territoire. Il concevait la terre comme un organisme en mouvement, 

régi par des forces internes analogues à celles du corps humain. Dans ses cartes, les rivières sont les 

veines de la terre, les vallées en sont les muscles et les montagnes en forment l’ossature, tandis que l’eau 

joue le rôle du sang, fluide vital, qui irrigue et modèle le relief. Il formula cette pensée, vers 1504, dans 

le Codex Leicester, F.10.r. : 

« Il sangue che scorre per le vene dell’uomo è simile all’acqua che scorre per le vene della terra; 

come il sangue nutrisce e vivifica il corpo umano, così l’acqua nutrisce e vivifica la terra. »  

« Le sang qui coule dans les veines de l’homme est semblable à l’eau qui coule dans les veines de la 

terre ; comme le sang nourrit et vivifie le corps humain, l’eau nourrit et vivifie la terre. » 

Cette analogie témoigne d’une pensée profondément unitaire. À travers, ses représentations du 

territoire, Léonard cherchait à révéler la physiologie de la nature, un système d’équilibres et de 

circulations où chaque élément est relié à l’autre. 

Cette pensée est attestée, dans le Codex Arundel, f.155 r. : 

«Tutte le cose sono legate insieme da vincoli che l’occhio non può vedere. »  

« Toutes choses sont liées ensemble par des liens que l’œil ne peut voir. » 

Ainsi, là où la Mésopotamie inaugura la pensée de la mesure, et l’idée qu’il existe un ordre rationnel 

dans la nature, Léonard passa à une lecture physiologique et géométrique du vivant. 

Conclusion  

La géométrie et la science furent, pour léonard de Vinci, les voies par lesquelles l’esprit humain 

pouvait s’élever vers la connaissance des lois divines. Sa démarche reposait sur une exigence, à la fois 

morale et rationnelle. Par la raison et la foi en une harmonie supérieure, il chercha à dévoiler les forces 

invisibles qui régissent l’univers.  

À travers L’Homme de Vitruve, il révéla que la beauté du monde procède de l’ordre, de la mesure et 

de la proportion, reflets d’une harmonie divine que les sages de l’Antiquité avaient déjà pressentie. En 

unissant les mathématiques à l’observation du réel, il accomplit la démonstration la plus aboutie, celle 

d’un équilibre où l’homme devient le miroir et la mesure de la création. 

Ainsi, L’Homme de Vitruve ne représente pas seulement un idéal de proportions, mais incarne encore 

aujourd’hui l’affirmation d’un principe universel, celui d’une unité vivante qui relie le corps humain, la 

nature et le cosmos. Par cette synthèse, Léonard de Vinci s’impose comme l’un des esprits les plus vastes 

de tous les temps, à la fois scientifique, artiste et philosophe, pour qui l’observation, l’expérience et la 

raison conduisent à la compréhension de l’ordre suprême de l’univers. 
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