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ABSTRACT. The Slater index (resp. decomposability index) of a tournament is the minimum number of arcs that must
be reversed in that tournament in order to make it a total order (resp. indecomposable (under modular decomposition)).
The first author [H. Belkhechine, Decomposability index of tournaments, Discrete Math. 340 (2017) 2986—2994] showed
that for every integer n > 5, the decomposability index of the n-vertex total order equals ["T“] It follows that the Slater
index of an indecomposable n-vertex tournament is at least ["T“] This led A. Boussairi to ask the following question
during the thesis defense of the second author on July 2, 2021: what are the indecomposable tournaments 7" whose Slater
index is minimum over all indecomposable tournaments with the same vertex set as 7'? These tournaments are then the
indecomposable tournaments 7' obtained from a total order by reversing exactly [1)(T4¢] arcs, where v(T') is the number
of vertices of T'. In this paper, we characterize such tournaments by means of so-called irreducible pairings.
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1. Introduction

The structures we consider are principally tournaments, total orders, and pairings, all of them are
finite. We consider the following classical problem: what is the minimum number of arcs that must be
reversed in a tournament in order to transform it into a tournament satisfying a given property? This
general issue has been considered by several authors under different properties and considerations (see
e.g., [, 2,15, 1114 112} 14, 117, 20, 24} 27]). In this paper, we consider the problem within two properties:
transitivity and indecomposability (under modular decomposition). We identify transitive tournaments
with total orders.

The Slater index of a tournament is the minimum number of arcs that must be reversed in that tourna-
ment in order to make it a total order. This index was introduced by P. Slater [27] in 1961. It was also

extensively studied by several authors under various aspects (combinatorial, algorithmic, etc.), see e.g.,
(L, 2, (114 120 (144 [17]).

On the other hand, the decomposability index of a tournament (with at least five vertices) was intro-
duced in 2017 by the first author in [4] as the minimum number of arcs that must be reversed in that
tournament in order to make it indecomposable. The reason we restrict this index to tournaments with at
least five vertices is that tournaments with four vertices are all decomposable. This index has also been
studied by the first two authors in [S)], and by the second author in [7]. In [3], the authors proved that
the maximum value of the decomposability index over the n-vertex tournaments equals [”T”] In [7], the
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second author characterized the class of tournaments 7" whose decomposability index is maximum over
the tournaments with the same number of vertices as 7'. In fact, by the result of [3], these tournaments
are precisely the tournaments with decomposability index [@T Moreover, the total orders (with at
least five vertices) are part of these tournaments [, [7].

The results above give rise to the following relationship between indecomposability and Slater index:
given an integer n > 5, the minimum value of the Slater index over indecomposable n-vertex tournaments
1S [”T“], which also is the maximum value of the decomposability index over all n-vertex tournaments.
Moreover, the indecomposable n-vertex tournaments with minimum Slater index (i.e., whose Slater in-
dex is minimum over all indecomposable n-vertex tournaments) are the indecomposable tournaments
obtained from n-vertex total orders by reversing exactly [”T”] arcs. These results were presented by the
second author during her thesis defense on July 2, 2021, which led A. Boussairi, who was rapporteur for
the thesis, to ask about the structure of the indecomposable tournaments with minimum Slater index. In
this paper, we describe these tournaments in terms of irreducible pairings of total orders. In our previous
work [6], we established fundamental results that underpin this study. Indeed, the primary motivation for

[6] was to lay the necessary groundwork for the current manuscript.

The paper is organized as follows. In Section 2L we present our characterization of indecomposable
tournaments 7" with minimum Slater index by describing them according to the residue of v(7") modulo
4 (Theorems 2.1H2.4)). Further notions and tools related to indecomposability are presented in Section 3l
We prove Theorems in Section 4] Theorem 2.3]in Section 5] and Theorem [2.4]in Section

2. Preliminaries and main results

A tournament T = (V(T), A(T)) consists of a finite set V' (T") of vertices together with a set A(T)
of ordered pairs of distinct vertices, called arcs, such that for every = # y € V(T),(x,y) € A(T) if
and only if (y,x) ¢ A(T). The size of T, denoted by v(7T'), is that of V' (T"). Given a tournament 7, the
subtournament of T induced by a subset X of V' (7T') is the tournament T[ X ] := (X, A(T) n (X x X)).
For X ¢ V(T), the subtournament T'[V'(T") N X] is also denoted by 7" - X, and by 7' — = when X is the
singleton {z}. Two tournaments 7" and 7" are isomorphic, written T" = T", if there exists an isomorphism
from 7" onto 7", i.e., a bijection f from V' (7") onto V' (T") such that forevery = + y € V(T), (z,y) € A(T)
ifand only if (f(x), f(y)) € A(T"). This paper is based on two specific types of tournaments: total orders
and indecomposable tournaments.

A total order is a transitive tournament, that is, a tournament 7" such that for every x,y,z € V(T), if
(z,y) € A(T) and (y, z) € A(T), then (x,z) € A(T). We identify a transitive tournament 7" with the
set V(T) totally ordered as follows: for every x,y € V(T), x < y when (z,y) € A(T). Given a totally
ordered set V/, when the total ordering < on V' is implicitly understood, the total order (V,{(x,y) €
V xV :x <y}) is denoted by V. In this context, V' and V are often used interchangeably. Since we only
consider finite structures, we may assume that V' is a subset of N totally ordered by the natural order on
integers. When V' = {0,...,n — 1} for some positive integer n, the total order V' is simply denoted by
n. Note that for purely technical reasons, we sometimes need to extend n by inserting rational numbers
between consecutive integers. In this instance, the resulting extension W consists of a subset W of Q,
with the natural order on rational number induced by IW.
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The notion of indecomposability relies on that of a module. The notion of module generalizes to all
tournaments the usual notion of interval in a total order. Recall that an inferval of a totally ordered set V'
1s a subset / of V' such that every element v in V' \ [ is greater than all the elements of I or smaller than
all of them. Analogously, we define a module of a tournament 7" to be a subset M of V' (7") such that for
every vertex v in V(T') ~x M, we have {v} x M ¢ A(T) or M x {v} ¢ A(T). Observe that the notions
of module and interval clearly coincide for total orders. The notion of module generalizes also to other
combinatorial structures such as graphs and digraphs [[19]], binary relational structures [26], 2-structures
[15], and hypergraphs [9]. It appears in the literature under various names such as interval [19], convex
subset [16], partitive subset [30], autonomous set [[10], clan [15]], and, of course, module [13].

We now come to the notion of indecomposability. Let 7" be a tournament. The empty set &, the entire
vertex set V' (7'), and its singleton subsets are clearly modules of 7', called trivial modules. The tour-
nament 7' is indecomposable [30] (or prime [13] or primitive [13] or simple [16]]) if all its modules are
trivial; otherwise it is decomposable. Let us consider some examples. The tournaments of sizes at most 2
are clearly indecomposable. Up to isomorphism, the 3-vertex tournaments are the total order 3, which is
decomposable, and the 3-cycle C5 := ({0,1,2},{(0,1),(1,2),(2,0)}), which is indecomposable. Up to
1somorphism, there are exactly four 4-vertex tournaments, all of them are decomposable (see e.g., [23]]).
For sizes at least 5, it is well-known that there exist indecomposable n-vertex tournaments for every n > 5
(see e.g., [4]). In fact, Erdds et al. [16] proved that almost all tournaments are indecomposable. However,
the total orders of sizes at least 3 are all decomposable. Let 7" be an indecomposable tournament. A
vertex x of 1" is said to be critical if T' - x 1s decomposable. The support of T' is the set of its noncritical
vertices; it is denoted by supp(7’).

This paper relies on two reversal indices for tournaments, based on transitivity and indecomposability.
We use the following notation. Given a set 1/, for a nonnegative integer k, we denote by (‘,;) the set of

all k-element subsets of V. To every tournament 7" with a subset P of (V(ZT)), we associate the tour-
nament Inv(7', P) obtained from 7" by reversing P, i.e., by reversing all the arcs (x,y) € A(T) such
that {x,y} € P. Thus, Inv(T, P) = (V(T),A(T) ~ ({(z,y) € A(T) : {z,y} € P} u{(z,y) : {z,y} €
P and (z,y) ¢ A(T)}). For example, the dual tournament of 7" is the tournament 7™* := Inv (7, (V(ZT))).
Note that (Inv(7, P))* = Inv(T*, P). Moreover T' and T* have the same modules; in particular 7" is
indecomposable if and only if 7™ is indecomposable. In the proof of Theorem these remarks justify
that a tournament can be interchanged with its dual.

Let T" be a tournament. The Slater index of 'T' is the smallest integer m for which there exists a subset
P of (V(QT)) such that | P| = m and Inv (T, P) is a total order. The resulting total order Inv(7’, P) is called
a median order of T. When v(T) + 4, we also define the decomposability index of the tournament 7" as
the smallest integer m for which there exists a subset P of (V(ZT)) such that | P| = m and the tournament
Inv(T, P) is indecomposable. The Slater index and the decomposability index of the tournament 7" are
denoted by s(7") and §(7"), respectively. The Slater index is clearly well-defined for all tournaments.
But the decomposability index is well-defined only for tournaments with sizes other than 4, because,
as observed above, the set of integers n for which there exist indecomposable n-vertex tournaments
is N \ {4}. For convenience, we omit the few tournaments with sizes at most 3, and we consider the
decomposability index only for tournaments with at least five vertices. Let n be an integer with n > 5. The
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first author [4] proved that §(n) = [”T”} Now let s(n) be the minimum of s(7") over the indecomposable

tournaments 7 of size n. Clearly s(n) = 6(n). Since §(n) =[], we obtain

s(n) =0(n) = [ (2.1)

n + 1}
We are interested in the indecomposable tournaments with minimum Slater index, that is, the indecom-

posable tournaments 7' whose Slater index is minimum over the indecomposable tournaments with the

same size as 7. By (2.1), these tournaments are the indecomposable tournaments 7 with Slater index

s(T) = [U(ﬂ)ﬂ], or, equivalently, the indecomposable tournaments 7" obtained from a total order by re-

versing exactly [%] arcs. The purpose of this paper is to characterize such tournaments (Theorems

2.1H2.4)). Their structure is closely related to the notion of so-called irreducible pairings in total orders.
In fact, almost all of them are obtained from total orders by reversing irreducible pairings. Given a totally
ordered set 1/, a partition P of V' (or of V') is irreducible [3}, 18] (or connected [22]) if no nontrivial interval
of V' is a union of some blocks of P; otherwise it is reducible. (Recall that the blocks of a partition are

the sets constituting this partition.) The partitions we need are primarily pairings, i.e., partitions whose
blocks have size 2. However, we also consider another closely related type of partitions in which one
block has size 3 and all other blocks have size 2. An irreducible pairing [28, [29] is then an irreducible
partition whose blocks are unordered pairs. The study of irreducible pairings goes back at least to the
1950s. It seems that Touchard [31} 32] was the first author to consider and study these configurations,
which he called proper systems. This name is no longer used, but the notion has been reconsidered by
several authors under other names such as irreducible pairings [28| 29]], irreducible diagrams [21]], and
linked diagrams [3), 25]. For example, Kleitman [21] found that the proportion of irreducible pairings
among all pairings of 2n is asymptotically e! (see also [18]).

Given a set V' (of even or odd size), a pairing of a subset (of even size) of V' is called a partial pairing
of V. Note that a partial pairing P is a pairing of the union UP of all the blocks of P. Given an integer
m > 5, when m = 3 or2 (mod 4), we will see that all the m-vertex indecomposable tournaments with
minimum Slater index are, up to isomorphism, obtained from m by reversing some irreducible partial
pairings of m (Theorems 2.1H2.2)). Since our description of indecomposable tournaments with minimum
Slater index is based on irreducible pairings of certain vertex subsets, it is practical to construct these
tournaments on vertex sets which are initially totally ordered. Such tournaments, i.e. tournaments whose
vertex sets are totally ordered, are called ordered tournaments. For this reason, it is convenient for the
vertex sets to be subsets of N, implicitly ordered by the natural total order on integers. We then introduce
the following notations. Let p and ¢ be two nonnegative integers. We denote by [p, q], [p,q[, Ip, 4]
and [p, q[ the intervals of N defined as follows: [p,q] := {i € N : p < i < q}; [p,q[:= [p,q] ~ {¢};

Ip, 4l := [p,q] ~ {p}; and [p, q[:= [p, ¢] ~ {p, ¢} Note that when p > g, the interval [p, ¢] is the empty set.
For X c N, the set of even (resp. odd) integers in X is denoted by Xyen (resp. Xoqq)-

For every integer n > 5, we denote by 7, the (finite) set of indecomposable n-vertex tournaments 7'
whose vertex set is V(7') := [0,n — 1] and whose Slater index is minimum over the tournaments of
size v(T') (or, equivalently, over the tournaments with vertex set V' (7")). By @2.)), 7, is the family of
indecomposable tournaments with vertex set [0,n — 1] and Slater index [”T”] We also consider the
subset of ,,, which we denote by J,,, whose elements are the tournaments of 7, for which n is a median

order. In other words,
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Remark 2.1. 7, is the family of indecomposable tournaments obtained from n by reversing exactly 6(n)
arcs, that is, exactly [”T“] arcs (see (2.1)).

Clearly, every tournament of the family 7, is isomorphic to a tournament of its subfamily 7,. We
therefore elect to characterize the tournaments of the families J,,, m > 5. These tournaments are shown
in Figure [Il for small values of m (m € {5,6,7}).

We describe the families 7,,,, m > 5, according to the modulo 4 residue of m. We begin with m = 3
(mod 4). We obtain the following theorem.

Convention. Let T be a tournament. For X ¢ V(T'), X denotes V(T \ X.

Theorem 2.1. For every positive integer n, the tournaments of the family Jy,.3 are the tournaments
Inv(4n + 3, P), where P is an irreducible pairing of [0,4n + 2]even. Moreover, for every tournament
T € Jyn+3 and for every e € [1,4n + 1] oaq such that €| > 5, the tournament T — e is indecomposable.

For example, Inv(7, {{0,4},{2,6}}) is the unique tournament of the family 77 (see Figure[I)).

Figure 1. The tournaments of the families J5, 75, and 77 (undrawn arcs belong to A(7)).

We will see that, up to isomorphism, the tournaments of the families 4,42, J4n+1 (n > 1), and Ty, (0 >
2) are obtained from those of the family J4,,.3 (described in Theorem [2.1)) by small modifications. These
modifications consist of deleting one to three vertices with, in a few cases, a minor adjustment consisting
of reversing only one arc. For example, we prove that for every positive integer n, the tournaments of
the family Jy,,,2 are, up to isomorphism, obtained from those of the family J4,,.3 by deleting one odd
vertex. These tournaments are isomorphic to the tournaments of the family 7,2, but do not belong to
this family. We then need to proceed with a relabeling of the vertices to bring these tournaments into
the family J4,.2. The situation is similar for the families J4,,1 and J4,. To describe the appropriate
relabelings in a canonical way, we use the following notations.

Notation 2.1 (Canonizations). Let 7' = (1, A) be a tournament, and let F be a family of subsets of V.
Given a bijection 7w from V' onto a set 1V, we denote by 7(7") the tournament (W, 7(A)), where 7(A) :=
{(m(x),7(y)): (z,y) € A}. Note that 7 is an isomorphism from 7" onto 7(7"). We also denote by 7(F)
the family {#(F) : F' € F}, where 7(F) = {n(z) : x € F'}. We mainly need such notations when T’
is an ordered tournament, especially when V' ¢ N. In this case, let 77 (or my) denote the isomorphism
from V onto v(7"), i.e. the strictly increasing function from V" onto [0,v(T") — 1]. We then consider the
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tournament 77 (7") (resp. the family 77 (F)) as the canonical form of the tournament 7" (resp. the family
F). We denote the canonical forms 7TT(T) and 7 (F) by T and Fr, respectively. For example, given
Pc ( ) we have Inv(T P) = Inv(T, Pr). Moreover, P is a pairing (resp. an irreducible pairing) of UP
if and only if Prisa pairing (resp. an irreducible pairing) of uPr. Similarly, P is a partltlon (resp. an
irreducible partition) of UP if and only if Py is a partition (resp. an irreducible partition) of UPp.

We now describe the families Jy,,.2, 7 > 1, in the following theorem.

Theorem 2.2. For every positive integer n, the tournaments of the family Jy,.o are the tournaments
T —x, where T € Jy.3 and x € [[1,4n + 1] o4q.

For example, for n = 1, the three tournaments of the family 75 are shown in Figure[Il

Observe that for an integer n > 1, all the tournaments of the family J4,.3 are obtained from 4n + 3 by
reversing some specific partial pairings of 4n + 3 (see Theorem 2.1)). Similarly, all the tournaments of
the families J4,,42, n > 1, are obtained from 4n + 2 by reversing some specific partial pairing of 4n + 2
(see Theorem [2.2]). But this observation no longer holds for the families Jy,.1 (n > 1) and Ty, (n > 2).
In fact, given a positive integer n, certain tournaments of the family Jy,,.1 (resp. J4,, n > 2) are obtained
from 4n + 1 (resp. 4n) by reversing quasi-pairings instead of pairings. The notion of quasi-pairing is an
extension of that of pairing to sets of odd sizes. Let IV be a set of size 2n + 1 with n > 1. A quasi-pairing
of W is a cover of W by a family of n + 1 unordered pairs of W, i.e., a subset () of (2/) such that
Q| = n+ 1 and uQ = W. When W is a subset of a set V' (of odd or even size), a quasi-pairing of W
is also called a partial quasi-pairing of V. Let () be a partial quasi-pairing of a totally ordered set V'
(of size at least 3). We denote by 0, Vs and UZQ the unique elements of u() such that {0, Ué} € Q,
{0q,v5} € Q, and vy, < vf;. Moreover, the 3-element set {9, v, v, } is denoted by By.

Let n be a positive integer. We need some additional notations to describe the tournaments of the family
Tin+1, that we partition into two subfamilies 7, ,, and J ,, (see Notation 2.2 and Theorem 2.3). Let
V be a set (of even or odd size). With every partial pairing P of V, we associate the involution without
fixed points of UP, which we denote by ip, defined by ip(B) = B for every block B € P. This defines
a natural one-to-one correspondence between partial pairings of V' and involutions without fixed points
of subsets (of even sizes) of V. Now let V' be a totally ordered set (of size at least 3) and let () be a
partial quasi-pairing of V. Given z € V/, the vertex subset {y € U@ : {z,y} € Q} is denoted by tq(z).
So 1o(dq) = {vg, v}, and for every x € (UQ) \ {Dq}, we have |ig(2)| = 1 and the (unique) element of
tg(z) is denoted by ig(z).

Notation 2.2. Let n be a positive integer.

* We denote by J ,, the set of tournaments T —e, where T € Jy,.3 and e € ([[1’4";1]]0‘1‘1).

* To every tournament T € Jy,,3 with a vertex x € [1,4n + 1],q4, We associate the tournament
Tz = Inv(T —{z,z+ 1}, {{z~1,ip(z+1)}}), where P is the pairing of [0,4n + 2]]even such that
T =Inv(4n + 3, P) (see Theorem 2.1)). We now denote by I+ the set of tournaments T(x), where
T € Typez and € [1,4n + 1]oda-

The tournaments of the families 7,/ ,, n > 1, can also be expressed in terms of quasi-pairings (see
Remark 2.2 below).
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Remark 2.2. Consider a tournament 7' ¢ 7 .. We have T = UZ; for some tournament U :=
Inv(4n+3, P) € Jyne3 and x € [[1,4n + 1]oaa (see Notation 2.2)). So there exists a unique quasi-pairing
Q) of [0,4n]even such that 7' = Inv(4n + 1, Q). Moreover, we have v = = - 1, v = min(7(ip(x -
1)), m(ip(z+1))), v, = max(w(ip(z-1)),7(ip(x+1))), and hence By = {z-1,7(ip(z-1)), 7(ip(z+
1))}, where 7 = 7y, (see Notation 2.1]).

Theorem 2.3. For every positive integer n, we have Jy,1 = I, 0T, . More precisely, {T .., T/ .1}
is a partition of Jyp41.

Theorem [2.3] says that for every positive integer n, the family J4,,1 consists of tournaments obtained
from 4n + 1 by reversing some partial pairings of 4n + 1 (the tournaments of 7, ), as well as tourna-
ments obtained from 4n + 1 by reversing some quasi-pairings of [0, 4n]even (the tournaments of 7,”

4n+1°
see Remark [2.2)). For n = 1, the six tournaments of the family 75 are shown in Figure[ll

At present, the families 7,,,, m > 5, are characterized for m = 3, 2 or 1 (mod 4). So it only remains to
characterize the families J4,,, n > 2. Let n be an integer with n > 2. As we did with the family J4,,.1, we
will partition the family Ty, into two subfamilies 7, and 7, (see Notation [2.3]and Theorem [2.4]). We
first need the following lemma. - -

Lemma 2.1. Let T' be a tournament of the family 7,/ |, where n > 2, and let P be the quasi-pairing of

[0, 4n]even such that T = Inv(4n + 1, P) (see Remark2.2). We have

[1,4n = 1]oqq ~ {min(Bp) + 1} if min(Bp) +2 € Bp,
supp(7) =1 [1,4n - 1]oaa ~ {max(Bp) -1} if max(Bp) -2 € Bp, (2.2)

[1,4n = 1]oaq otherwise.

Remark 2.3. To see that is well-defined, it suffices to show that min(Bp) + 2 € Bp and
max(Bp) — 2 € Bp cannot occur simultaneously. So suppose to the contrary that min(Bp) +2 € Bp
and max(Bp) — 2 € Bp. Since |Bp| = 3, it follows that min(Bp) + 2 = max(Bp) — 2 and hence
Bp = {min(Bp), min(Bp) + 2, min(Bp) + 4}. Since T' = Inv(4n+1, P) and P is a quasi-pairing
of [0,4n]even, it follows that [min(Bp), max(Bp)] is a module of 7', which is nontrivial because
|[min(Bp), max(Bp)]| =5 and v(7T") > 9. This contradicts that 7" is indecomposable.

Notation 2.3. Let n be an integer with n > 2.

* We denote by 7, Q the set of tournaments 7' — e, where T’ € J4,,.3 and e € ([[1’4”§1H°dd).

* We denote by 7, the set of tournaments 7' — z, where 7" € I | and x € supp(7") (see Lemma[2.T).

Theorem 2.4. For every integer n > 2, we have Jy, = I, U Iy, More precisely, {7@, 7&} is a partition
0f74_n

3. Basic tools

3.1. Co-modules, A-decompositions, and indecomposability

The notions of co-module and A-decomposition were introduced in [3]] as follows. Given a tournament
T, a co-module of T is a subset M of V(T') such that M or M is a nontrivial module of 7. A co-module
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of T'is minimal if it does not contain any other co-module. We denote by mc(7") the family of minimal
co-modules of 7'. For example, for every integer n > 3, we have

me(n) = {0}, {n-1}} U{{i,i+1}:1<i<n-3}, G.1)
and for any totally ordered set V' with [V| = n, we have mc(V) = 7! (me(n)) (see Notation 2.T).

A co-modular decomposition of a tournament 7" is a set of pairwise disjoint co-modules of 7. A A-
decomposition of T 1s a co-modular decomposition of 7" which is of maximum size. Such a size is called
the co-modular index of T, and is denoted by A(T'). The first two authors [5] showed that for every
integer n > 3, we have

A(E)Z[THFI-‘-

Note that we need the notions of co-module and A-decomposition only in the particular case of total
orders, instead of general tournaments.

(3.2)

Example 3.1. Given an integer n > 3, it follows from (3.1)) and (3.2) that Dy := {{0},{n - 1}} u {{2i -
1,2} : 1 <i < [”T_ZJ} is a A-decomposition of n. Moreover, when n is odd, D5 := {{0},{n - 1}} U
{{2i,2i+ 1} : 1 <i<| 22|} is another A-decomposition of 7.

Given a set family 7, a transversal of F is any set R that intersects each element of 7, that is, such that
FnR#+aforevery F € F. A transversal R of F is exact if |F'n R| = 1 for every F' € F. The following
fact shows the involvement of the aforementioned notions in the class of indecomposable tournaments
with minimum Slater index.

Fact 3.1. Let V be a finite totally ordered set with |V'| =n > 5, and let P be a subset of(g).

1. If the tournament Inv(V, P) is indecomposable, then UP is a transversal of the family of all co-
modules of V, and hence a transversal of mc(V).

2. Let e N\ {0} and r € {0, 1,2, 3} be the (unique) integers such that n = 4q + r. If Inv(V, P) € T,
then
2q + 2 ifre{2,3},

luP|= (3.3)
2g+1or2q+2 ifre{0,1}.

Proof. We may assume V' = [0,n — 1] and V = n. If (UP) n M = @ for a co-module M of n, then M
remains a co-module in Inv(n, P), and hence Inv(n, P) is decomposable. Therefore, the first assertion
holds. For the second assertion, suppose Inv(n, P) € 7,. In this instance, |P| = [”T”] (see Remark 2.1))
and hence |U P| < 2 [”T”] Now consider a A-decomposition D of n. Since |D| = A(n) = [”T”] (see
(3.2)), and the elements of D are pairwise disjoint co-modules of n, it follows from the first assertion
that |u P| > [”7”1 Thus [”T”] <|uP|<2 [”T”], and hence (3.3)) holds. ]

3.2. Indecomposability and irreducibility

We obtained Theorems [3.1H3.3] below in [6]. These theorems form basic tools in our proofs of The-
orems Theorem provides a characterization of indecomposable tournaments obtained from
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total orders by reversing partial pairings. Theorems [3.2] and [3.3] are analogues of Theorem [3.1] for quasi-
pairings under the following mode of irreducibility. Let () be a quasi-pairing of a totally ordered set V'
of odd size at least 3. We denote by ()part the partition of V' obtained from () by merging {0, vg)} and
{0q,v5}, thatis, Qpar = (@ N {{0q, v} {0q, v, ) U{Bq}- The quasi-pairing @ is irreducible if the
partition (Jpay¢ is irreducible; otherwise it is reducible.

Theorem 3.1 ([6]). Let V' be a finite totally ordered set such that |V'| > 5, and let P be a partial pairing
of V.. The following assertions are equivalent.

1. The tournament Inv(V, P) is indecomposable.

2. The partial pairing P of V' is an irreducible pairing of a transversal of mc(V).
Theorem 3.2 ([6]). Let V' be a finite totally ordered set such that |V'| > 6, and let () be a partial quasi-
pairing of V. Consider the tournament T := Inv(V , Q). The following assertions are equivalent.

1. The partial quasi-pairing Q of V' is an irreducible quasi-pairing of a transversal of mc(V).

2. At least one of the tournaments T', T — Uy OF T - ng is indecomposable.
Moreover, the second assertion still implies the first one when |V'| = 5.

In Theorem the first condition is necessary but not sufficient for the tournament 7' to be indecom-
posable, necessitating additional conditions. This leads us to the next theorem characterizing indecom-
posable tournaments obtained from total orders by reversing partial quasi-pairings.

Theorem 3.3 ([6]). Given an integer m with m > b, consider a partial quasi-pairing ) of m. The
tournament Inv(m, Q) is indecomposable if and only if the following conditions are satisfied.

(C1) The partial quasi-pairing Q) of m is an irreducible quasi-pairing of a transversal of mc(m).
(C2) v 2vg+2.
(C3) Givenv e V(m), if {({v,v+2},{v+1,v+3}} CQ, then ¢ € {v,v +3}.

(C4) Givenv e V(m), if {v,v+1} € Q, then vg € {v,v + 1} and {0g — 1,09 + 1} € UQ (in particular
vg ¢ {0,m - 1}).

4. Proofs of Theorems[2.1land 2.2
We begin with the following simple but useful fact.

Fact 4.1. Let n be an integer with n > 3.

1. If nis odd, then [[0,n — 1] even is a transversal of mc(n).

2. Given X ¢ V(n), if X is a transversal of mc(n), then X is also a transversal of mc(n — e) for
every subset e of X.
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Proof. The first assertion follows directly from (3.1). For the second one, consider a transversal X of
mc(n), and let e be a subset of X. Since X is a transversal of mc(n), we have {0,n—1} ¢ X (see (3.1))),
and hence {{0},{n - 1}} € mc(n —e). Now let C' € mec(n - e). We have to prove that X n C' # @. If
C' emc(n), then X nC # @ because X is a transversal of mc(n). Now suppose C' € mc(n —e) \ me(n).
Note that n — e = n — |e|, and hence applies to n — e. Since {{0},{n - 1}} € mc(n - ¢), it follows
from applied to n — e that C' = {p,q} with 1 < p < ¢—2 < n—4. Moreover p+ 1 ¢ X. Since
{p,p+1} n X #+ @ because X is a transversal of mc(n), it follows that p € X and hence X nC' # @.
Therefore, X is a transversal of mc(n — e). ]

Proof of Theorem 2.1l Let n be a positive integer and let P be an irreducible pairing of [0, 47 + 2]even-
Consider the tournament 7" := Inv(4n + 3, P). Let e be a (possibly empty) subset of [1,4n + 1],qq4 Such
that [e|] > 5. By Factld.1], [0, 4n + 2] cven is a transversal of mc(4n + 3—e¢). Since T—e = Inv(4n + 3—¢, P)
and P is an irreducible pairing of the transversal [0,4n + 2]even Of mc(4n+3 — €), it follows from
Theorem that the tournament 7" — e is indecomposable. In particular, 7" is indecomposable. Since
|P| =n+ 1, it follows that T € Jy,,,3 (see Remark 2.1)).

Conversely, let n be a positive integer and let 7" € 7,,,3. There exists P (V(4;—+3)) such that |P| = n+1
and T' = Inv(4n+ 3, P) (see Remark 2.1). We will prove that P is a pairing of [0,47n + 2]eyen, and
that this pairing is irreducible. By Fact 3.1i2), we have |u P| = 2n + 2. On the other hand, Dy :=
({0}, {4n+2}} u{{20 - 1,2i} : 1 <i < 2n}and Dy := {{0}, {d4n +2}} u{{2,2i +1} : 1 <i < 2n}
are A-decompositions of 4n + 3 (see Example [3.1)). Since 7" is indecomposable, then by Fact [3.1)(1), the
union UP is a transversal of mc(4n +3) and hence of Dy U Ds. Since |Dy| = |Dy| = |U P| = 2n + 2, it
follows that

uP 1s an exact transversal of D u Ds. 4.1)

Moreover UP € uD;. In particular 4n + 1 ¢ UP. Since the elements of P are pairwise disjoint because
|u P| = 2|P|, to prove that P is a pairing of [0, 4n + 2] cyen, it suffices to show that UP = [0, 471 + 2] even-
So suppose for a contradiction that UP # [0, 4n + 2] eyen. Since |U P| = |[0,4n + 2] eyen|, it follows that the
intersection X := [1,4n+1],qaN(UP) is nonempty. So let p denote max(X). Note that {p+1,p+2} € Ds.
Since 4n + 1 ¢ UP, we have p < 4n + 1 and {p,p + 1} € D;. Now since 4n + 2 € UP (see (.1)), the
intersection Y := [p+ 1,4n + 2] eyen N (UP) is nonempty. So let ¢ denote min(Y'). If ¢ = p + 1, we obtain
{p,p+ 1} € UP, which contradicts (4.1]) because {p,p+1} € D;.If ¢ #+ p+ 1, i.e. ¢ > p + 3, we obtain
{p+1,p+2}n(UP) = @, which again contradicts because {p + 1,p + 2} € D,. Therefore, P is
a pairing of [0,4n + 2]even. Moreover, since 7" is indecomposable, it follows from Theorem [3.1] that the
pairing P is irreducible. ]

Proof of Theorem Let n be a positive integer. Consider 7" € Ty,,.3, and let z € [1,4n +1],qq. We have
to show that 7 — z € Tin+2. By Theorem [2.1] there exists an irreducible pairing P of [0, 47 + 2]even Such
that 7" = Inv(4n + 3, P). Moreover, the tournament 7" — x is indecomposable. Since T'— = = Inv(4n + 3 -
x,P)and 4n + 3 — x = 4n + 2, we have T-z= Inv(4n + 2, ?T_x) (see Notation[2.1)). Since |§T_x| =|P| =
d(4n +2), and T =z is indecomposable because 1" — z is, it follows that T =1 € T390 (see Remark 2.1)).

Conversely, let U € Jy,.2. We have to prove that U = T" - x for some 1" € Typ43 and x € [1,4n + 1]odq.
Since U € Tyy42, there exists P € (V(Ll;—”)) such that |P| =n+1 and U = Inv(4n + 2, P) (see Remark2.T)).

Claim 1. There exists p € [0, 2n] such that P is an irreducible pairing of [0, 2p]even U [2p + 1,41 + 1] 044
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Proof of Claim[ll Since |u P| = 2n + 2 = 2|P| (see Fact B.1IQ2)), then P is a pairing of UP. Since U
is indecomposable, then by Theorem 3.1} the pairing P is irreducible. To show that UP = [0, 2p]even U
[2p + 1,4n + 1] oqq for some p € [0,2n], which completes the proof, we consider the A-decomposition
D :={{0},{4n+1}}u{{2i—1,2i} : 1 <i < 2n} of 4n + 2 (see Example B3.1). By Fact B.II{I)), uP is a
transversal of mc(4n + 2) and hence of D. Since |D| =|u P| = 2n + 2, it follows that

UP is an exact transversal of D. 4.2)

In particular {0,4n + 1} < uP. Now consider the nonempty intersection X := [1,4n + 1]oqq N (UP).
We have min(X) = 2p + 1 for some p € [0,2n]. Take = € [0, 2p]even N {0}. Since {z - 1,2z} € D, and
x —1 ¢ UP because min(X) = 2p + 1, then x € UP by @.2). Since 0 € UP and min(X) = 2p + 1,
it follows that [[0,2p] n (UP) = [0, 2p]even- Now suppose for a contradiction that the intersection Y :=
[2p + 2,4n]cyen N (UP) is nonempty. Let ¢ denote min(Y'). If ¢ = 2p + 2, then {2p + 1,¢} € D and
{2p+1,q} c UP, which contradicts (4.2)). Therefore ¢ > 2p + 4. Since {g—1,q} € D and q € UP, then by
@.2),g-1¢uP. Since {q-2,q— 1} n (UP) + & because UP is a transversal of mc(4n + 2) (see (3.1)),
it follows that ¢ — 2 € UP. As ¢ > 2p + 4, this implies ¢ — 2 € Y, contradicting ¢ = min(Y"). Therefore
Y = @. Now the equality UP = [0, 2p]leven U [2p + 1, 41 + 1] o4q follows directly from the following facts:
uP e (1% [0, 2p] N (UP) = [0, 2p]evens and Y = @. 0

We now consider the tournament I" obtained from U by adding one new vertex (2p+ %) in the following
manner: I' = Inv(W, P), where W := [0, 4n+1]u{2p+ 3} (see Claim[I). Note that U = I'= (2p+1). Now
consider the tournament 7" := I'. By construction, we have U =T —x for x = 2p + 1. Since z € [[1,4n +
1]odas it suffices to verify that T' € Jy,,.3 to conclude the proof. Since I' = Inv(W, P) and E =4n + 3,
then T’ = Inv(4n + 3, Pr) (see Notation Z.1)). Moreover, since by Claim [, P is an irreducible pairing
of UP, we obtain that Pt is an irreducible pairing of uPr (see Notation 2.1)). But Ul = [0, 4n + 2] even
because UP = [0, 2p]even U [2p + 1,41 + 1] 5qq and ulr = urr(P) = w(UP), where 7 := rr is the strictly
increasing function from V(I") onto [0, 4n + 2] (see Notation 2.1). Thus, P is an irreducible pairing of
[0,4n + 2] eyen- It follows from Theorem 2.1l that 7" € Ty, 3. O

5. Proof of Theorem

We need the following technical lemma.

Lemma 5.1. Let n be a positive integer and let P be a subset of (V(%‘—H)) such that Inv(4n+1, P) €
TJan+1. Recall that |P| = n + 1 (see Remark[2.1) and | v P| € {2n + 1,2n + 2} (see Fact3.1112)).

1. If | U P| = 2n + 2, then there are p < q € [0,2n — 1] such that P is an irreducible pairing of
up = [[07 2p]]even U [[2p + 17 2q + 1]]odd U [[2q + 27 4nﬂeven-

2. If|u P|=2n+1, then P is an irreducible quasi-pairing of UP = [0, 4n] cven-

Proof. We consider the A-decompositions Dy := {{0},{4n}} u {{20 - 1,2i} : 1 < i < 2n -1} and
Do = {{0},{4n}} u{{2i,2i + 1} : 1 <i < 2n -1} of 4n + 1 (see Example 3.1)). By Fact B.1(T),

UP is a transversal of D1 u D». (5.1)
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For the first assertion, suppose |U P| = 2n+2. In this instance, P is a pairing of UP because |u P| = 2|P|.
Moreover, since Inv(4n + 1, P) is indecomposable, then by Theorem [3.1] the pairing P is irreducible.
Recall that 0 € UP and 4n € UP (see (5.1)). So consider, in [0,2n], the largest integer p such that
[0, 2p] N (uP) = [0, 2p]even, and the smallest integer v such that [2v,4n] n (UP) = [2v, 4n]eyen- If v < p,
then UP = [0, 4n]even and hence | U P| = 2n + 1, a contradiction. Therefore 0 < p < ¢ < 2n — 1, where
q :=v — 1. We will prove that

UP = [0, 2p]even Y [20 + 1,2q + 1]0aa Y [2¢ + 2, 4n] even- (5.2)

If 2p+ 1 ¢ UP, then 2p + 2 € UP (see (5.1)) and hence [0, 2p + 2] n (UP) = [0, 2p + 2] even, contradicting
the definition of p. Therefore 2p + 1 € UP. Similarly, 2¢ + 1 € uP. Thus,

[0,2p + 1] n (UP) = [0, 2p]even U {20 + 1}
and (5.3)
[2¢ + 1,4n] n (UP) = [2¢ + 2,4n]even U {2q + 1}.

It follows that (5.2)) holds when ¢ = p. Now suppose ¢ > p + 1. In this instance, it follows from (5.3) that
[0,2p + 1] n (uP) and [2q + 1,4n] n (UP) are disjoint with respective sizes p + 2 and 2n — ¢ + 1. Since
|u P| =2n + 2, it follows that

120 +2,2¢] N (UP)|=q-p-1. (5.4)

By (8.3), to obtain (5.2)), it suffices to prove that [2p + 2,2¢] n (UP) = [2p + 2,2¢]oaq- Since |[2p +
2,2q]oaa| = |[2P+2,29] n(UP)| = g—p-1 (see (5.4)), it suffices to show that [2p+ 2, 2¢]eyen N (UP) = @.
Letu € [p+1, g]]. To prove that 2u ¢ UP, consider D := {d € Dy :d < [2p+2,2u[}u{d € D : d €]2u, 2q] }.
Clearly |D| = ¢g—p—-1, and the elements of D are pairwise disjoint elements of D;uUD,. Thereby, it follows
from (3.I)) that [(uD) n (UP)| > g — p— 1. Consequently, since UD = [2p + 2, 2¢] ~ {2u}, it follows from
that 2u ¢ UP. Therefore [2p + 2, 2¢]even N (UP) = @, completing the proof of the first assertion.

For the second assertion, suppose | U P| = 2n + 1. Since |Dy| = 2n + 1, it follows from (5.1)) that
UP 1s an exact transversal of Ds. (5.5)

Moreover UP € UDs,. In particular 1 ¢ UP since 1 ¢ uDs. On the other hand, P is a quasi-pairing
of UP because |P| = n+ 1 and | U P| = 2n + 1. Moreover, since Inv(4n + 1, P) is indecomposable,
then by Theorem the quasi-pairing P is irreducible. So to conclude the proof, it remains only to
show that UP = [0, 4n]even- Suppose for a contradiction that the intersection X := [0,4n],qq N (UP)
is nonempty. Let k& denote min(X). We have k > 3 because 1 ¢ UP. Therefore {k — 2,k — 1} € Dy.
Since k — 2 ¢ UP because k = min(X ), we obtain k£ — 1 € UP (see (5.1))). Thus {k - 1,k} < UP. Since
{k —1,k} € Dy, this contradicts (5.5). Therefore UP € [0, 4n]cyen. Since |[0, 4n]even| = | U P), it follows
that UP = [0, 4n] even- O

Proof of Theorem[2.3] Let n be a positive integer. We have to prove that {7, .,, 7/ |} is a partition of
Tinw1. Clearly 7/ ., + @, 9, + @, and T, ., n T/ | = @. We now prove that Ty,1 = T ., 0T/ .
Let U € Juy41. To prove that U € 7/ ., u J," |, we consider the subset P of (V(Zlg—”)) such that U =

dn+1>

Inv(4n + 1, P). By Fact B.1IQ2), we have |u P| € {2n + 1,2n + 2}.

First suppose | U P| = 2n + 2. By Lemma [5.1i(I)), there are p < ¢ € [0,2n — 1] such that P is an
irreducible pairing of UP = [0, 2p]even U [2p + 1,2¢ + 1]oda U [2¢ + 2, 4n]even. We now consider the
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tournament [' obtained from U by adding two new vertices 2p + % and 2q + 2 3 in the following manner:

= Inv(W, P), where W := [0, 4n]u{2p+1 2q+2} Note that U = I'={2p+3, 2¢+3 }. Now consider the
tournament 7 := I. By construction, we have U = T — e for e = {2p+1,2¢ +3}. Clearly e € ([[1 4"+1]]°dd).
To see that 7' € Jy,.3, observe that T' = Inv(4n + 3, ]5}). Moreover, ]5} is an irreducible pairing of
ulr = [0, 4n+ 2] eyen because P is an irreducible pairing of [0, 2p]even U[20+ 1, 2¢+1]0aa U[2g+2, 41 ] even
(see Notation [2.1]). It follows from Theorem 2.1 that 7" € Jy,,,3 and hence U € 7/ ;.

Second suppose |U P| = 2n + 1. By Lemma[5.1i(2)), P is an irreducible quasi-pairing of [0, 4n]even. Let
us consider the pairing I of [0, 4n]even U {0p + 5} obtained from the quasi-pairing P in the following
manner:

(P~ {{op,vp})) U {{op + b vp}} ifup <op <,

(P~ {{op,v5}}) u{{op+L,v5}} otherwise.

We then consider the tournament I = Inv (W, IT), where W := [0,4n] u {ép + 5, 9p + 5 }. Now consider
the tournament 7" := I'. By construction, we have T = Inv(4n +3,1Ir), and U = T,y for x = 0p + 1 €
[1,4n + 1] oqq (see Notations [2.1land[2.2). By Theorem [2.1], to prove that 7" € J4,,,3 and hence U € 7

4n+1°
it suffices to show that Il is an irreducible pairing of [0,4n + 2]even, Or, equivalently, that II is an

irreducible pairing of UII = [0, 4n] eyenU{0 p+%} (see Notation2.1)). By construction, 0p and © p+% belong
respectively to two distinct blocks B and B’ of the pairing II. Moreover, B u B = {p,0p + 1, v5, 05},
and the pairing { B, B'} of B u B’ is irreducible. Now let S be a nonempty and proper subset of I1. We
have to prove that uUS is not an interval of UlI, which implies that II is irreducible. We distinguish the
following three cases. First suppose Sn{B, B’} = @. In this instance, S is a nonempty and proper subset
of P. Since the quasi-pairing P is irreducible, we obtain that uS is not an interval of uP, and hence it is
not an interval of UII. Second suppose Sn{B, B’} = {B} or {B’}. In this instance, US is not an interval
of UII because the pairing {B, B’} of B u B’ is irreducible. Third suppose S n {B,B'} = {B,B'},
ie. {B,B'} c S.In this instance, (US) \ {0p + 1} is a union of blocks of Py (including the block
Bp = {dp,vp,v}p}). Moreover (US) \ {op + 3} ¢ UP. Therefore, (US) \ {dp + 3} is not an interval of
uUP because P is irreducible, and hence uS is not an interval of UII.

Conversely, let U € 7, ., UJ,, ;. We have to prove that U € Jy,,.1. To begin, suppose U € 7 ,,. There

exist 7' € Jy,13 and e € ([[1 4“;1H°dd) such that U = T — e (see Notation 2.2). Since [e| > 5, so by Theo-
rem the tournament U is indecomposable because 71" — e is indecomposable. Again by Theorem
T = Inv(4n + 3, P) for some pairing P of [0,4n + 2]even- Thus T — e = Inv(4n + 3 — e, P), and hence
U = Inv(4n+1, Pr_,) (see Notation 2.1)). Since |Pr_.| = |P| = n + 1, it follows that U € 1,41 (see
Remark 2.1)).

Now suppose U € 7/, ,. There exist T' € Jy,.,3 and = € [1,4n + 1]oqq such that U = T&; (see No-
tation 2.2). By Theorem T = Inv(4n+ 3, P) for some irreducible pairing P of [0,4n + 2]eyen-
Moreover, T(,y = Inv(W, R), where W := [0,4n + 2] \ {z,2 + 1}, and where R is the quasi-pairing
of [0,47n + 2] eyen ~ {z + 1} obtained from the pairing P as follows: R = (P~ {{z + 1,ip(z+1)}}) U
{{z - 1,ip(x +1)}} (see Notation 2.2). Thus U = Inv(4n + 1,Q), where Q) = ET@) (see Notation 2.1]).
Clearly @ is a quasi-pairing of [0,4n]even (see Notation 2.1). Since |@Q| = |P| = n + 1, then by Re-
mark to prove that U € J4,.1, which completes the proof, it suffices to prove that the tournament
U is indecomposable. Since U = Inv(4n +1,Q)), so by Theorem [3.3] one only needs to show that the
partial quasi-pairing () of 4n + 1 satisfies Conditions (C1)—(C4) of this theorem with m = 4n+ 1. Because
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U@ = [0,4n]even, the quasi-pairing @) clearly satisfies Conditions (C2)—(C4). Now since [0, 4n]even is a
transversal of mc(4n + 1) (see Fact A.1|(I))), to prove that Condition (C1) is satisfied, we only have to
show that the quasi-pairing @) of [0,4n]even is irreducible, or, equivalently, that the quasi-pairing R of
[0,4n + 2]eyen  {z + 1} is irreducible (see Notation 2.1)). So let .S be a nonempty and proper subset of
Rpart- We have to prove that US is not an interval of UR = [0, 4n+2]even N {z+1}. Note that 0 = -1 and
Br={x-1,ip(x-1),ip(x+1)}. First suppose Bp ¢ S. In this instance, S is a nonempty proper subset
of the pairing P. Since P is irreducible, it follows that US is not an interval of UP = [0,4n + 2] cyen. If
z+1 ¢] min(uS), max(uS)[, then since US is not an interval of UP, US is not an interval of (UP)~{z+1}
either. If z + 1 €] min(uS), max(uS)[, then since z — 1 ¢ US, we also have = — 1 €] min(uS), max(uS)[
and hence US is again not an interval of (UP) \ {z + 1}. Second suppose Br € S. In this instance,
(uS)u{x+1} is a union of blocks of the pairing P. Moreover, (US)u{z+1} ¢ UP because (US) ¢ UR.
Since P is irreducible, it follows that (US) u {x + 1} is not an interval of UP. Since z — 1 € US and
{z -1,z +1} is an interval of UP, it follows that US is not an interval of UR. Therefore R is irreducible,
completing the proof. 0]

6. Proof of Theorem 2.4

We first prove Lemma

Proof of Lemma2.1l We have to prove (2.2). Recall that (2.2)) is well-defined (see Remark 2.3)). Let
u € [0,4n]even. Clearly T'— u = Inv(4n + 1 — u, R), where

P~ {{u,ip(u)}} if u+0p,
R = (6.1)

P\ {{U7U;)}7{U7U;}} ifU:@P.

Since |P| = n + 1, it follows that |R| = n or n — 1. On the other hand, 4n+1 - v ~ 4n and hence
d(4n+1-u)=4d(4n) = n+1 (see 2.1)). Thus |R| < 6(4n+ 1 — u), and hence T - u is decomposable.
Since u was arbitrarily chosen in [0, 4n] cyen,

supp(7T') € [[1,4n - 1]oqq- (6.2)

Now let v € [1,4n — 1],4q. Recall that the tournament 7" — v is indecomposable if and only if T —vis.
Since T — v = Inv(4n + 1 — v, P), we have T — v = Inv(4n, Q), where Q = Pr_, is a partial quasi-pairing
of 4n (see Notation 2.1)). Recall that @) = {w(B) : B € P}, where 7 is the strictly increasing function
from [0, 4n] \ {v} onto [0, 4n — 1], and hence U@ = [0, v — 1] eyen U [, 41— 1] 04q. In the rest of the proof,
we use Theorem [3.3] to check the indecomposability of T —v, and hence that of 7' - v. We therefore
consider Conditions (C1)—(C4) of this theorem with m = 4n. These conditions on () are necessary
and sufficient for the tournament m, and hence for T' — v, to be indecomposable (see Theorem [3.3).
The quasi-pairing () obviously satisfies Condition (C3) because UQ) = [0,v = 1]even YU [v,47 — 1]0da-
Since T is indecomposable, then by Theorem [3.3] P is an irreducible quasi-pairing of the transversal
[0, 4n]even of mc(4n + 1), which is also a transversal of mc(4n + 1-v) (see Factd.1i2)). Therefore, P is
an irreducible quasi-pairing of a transversal of mc(4n + 1-v), and hence @ is an irreducible quasi-pairing
of a transversal of mc(4n). So @ also satisfies Condition (C1). Thus,

() satisfies Conditions (C1) and (C3) for every v € [1,4n — 1]odq. (6.3)
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Let p and ¢ denote min(Bp) and max(Bp), respectively. Since T' — v is indecomposable if and only if
() satisfies Conditions (C1)—(C4), then (2.2)) follows directly from (6.2)), (6.3)), and the following three
claims.

Claim 2. Ifv e [1,4n — 1]oqqa N {p + 1,q — 1}, then Q satisfies Conditions (C2) and (C4).
Claim 3. If v =p + 1, then Q) satisfies Conditions (C2) and (C4) if and only if p + 2 ¢ Bp.
Claim 4. Ifv = q — 1, then Q) satisfies Conditions (C2) and (C4) if and only if ¢ — 2 ¢ Bp.

By interchanging 4n + 1 and its dual (4n + 1)*, Claims[3]and4]are equivalent. So to conclude the proof,
it only remains to prove Claims[2] and 31

For Claim[2] suppose v € [[1,4n —1]oqq N {p+1,¢—1}. Suppose for a contradiction that Condition (C2)
is not satisfied, that is, ng =vg+ 1L Since U@ = [0,V —1]eyen Y[V, 4n—1]0aa, We get vg=v-1 and ng =.
Since 7(vp) = vy and w(vp) = vf), it follows that vp = v—1and vp = v+ 1. Thus v = vp +1 =vp - 1.
Since p = vy, or ¢ = v}, because |Bp| = 3 and v}, < v}, this contradicts v ¢ {p + 1,¢q — 1}. Therefore
Condition (C2) is satisfied. Now suppose to the contrary that {v — 1,v+ 1} € P. If 0p ¢ {v - 1,v+ 1},
then the nontrivial interval {v — 1,v + 1} of [0,4n]eyen is a block of Py, Which contradicts that the
quasi-pairing P of [0, 4n]even is irreducible. Therefore vp € {v—1,v+1}, and hence {v—-1,v+1} € Bp.
Since |Bp| = 3, it follows that p = v — 1 or ¢ = v + 1, which contradicts that v + p+ 1 and v # ¢ — 1.
Therefore {v—1,v+ 1} ¢ P. Since 7(v—1) =v-1and w(v + 1) = v, this implies {v — 1,v} ¢ Q. Since
v —1 and v are the unique consecutive elements of UQ) = [0,v — 1]even U [v,4n — 1]o44, it follows that
Condition (C4) is also satisfied.

For Claim[3] consider the quasi-pairing ) with v = p+1. Suppose p+2 € Bp. We will verify that () does
not satisfy both Conditions (C2) and (C4). First suppose vp ¢ {p,p + 2}. In this instance, by the choice
of p, v, = pand v = p + 2, and hence Vg =P and vg? = p+ 1. So Condition (C2) is not satisfied. Second
suppose Up € {p,p +2}. Since {p,p + 2} € Bp, it follows that {p,p + 2} € P and hence {p,p + 1} € Q.
Moreover, since 0¢ € {p, p+1} because 0p € {p,p+2}, and since UQ) = [0, pJleven Y [P+ 1, 41— 1] oaq, then
{0g — 1,09 + 1} ¢ uQ. Thus Condition (C4) is not satisfied. Conversely, suppose that () does not satisfy
both Conditions (C2) and (C4). Since p and p + 1 are the unique consecutive elements in UQ), it follows
that v/, = p+ 1 if Condition (C2) is not satisfied, and that {p,p+1} € Q if Condition (C4) is not satisfied.
Sovj,=p+1lor {p,p+1} € Q. In the first instance, v}, = p + 2 because 7(v},) = v;, and m(p+2)=p+1,
and hence p + 2 € Bp. In the second one, {p,p + 2} € P because 7(p) = p and 7(p +2) = p + 1. Since
p € Bp, it follows that p + 2 € Bp. ]

We also need the following lemma.

Notation 6.1. Given an integer n with n > 2, we denote by Uy, the set of (indecomposable) tournaments
T —x, where T' € J4,.1 and x € supp(7).

| _ !/ "
Lemma 6.1. For every integer n > 2, we have Uy, = T, U Ty,

Proof. Let U € Iy v I If U € I, then U = T —z for some T € T ey and z € supp(T) (see
Notation 2.3). Since ?4;; 41 € Jan+1 (see Theorem 2.3), we obtain U € Uyy,. Now suppose U € T/ . In this
instance, U = T — e for some T' € Jy,,3 and e € ([[1 4”?;”]0“) (see Notation 2.3). Note that [é| = 4n > 8

because n > 2. It follows from Theorem [2.1]that 7" —e is indecomposable, and hence U is indecomposable
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as well. Let x denote min(e) and let e’ := e\ {x}. Consider the tournament 7" := T' - ¢’. By construction,
T eJ, sl and U = T' — 1. By Theorem 2.3] 77 € J4,,,1. Since U and T" are indecomposable, it follows
that 7" - z is also indecomposable, that is, z € supp(7”). Thus U € Ugy. So T, T € Uy

Conversely, let U € Uyy,. By Theorem 2.3, U = T -z forsome T ¢ I/ uJ/

dn+1 dn+1
IfT €9} ,,, then U € J,7 (see Notation 2.3). Now suppose T' € J ,,. In this instance, T' = I" - —{i,, j}
for some I' € J4,,3 and dlstmct i,j € [1,4n + 1]oqq. By construction, we have U = [ — ¢ where ¢ =
{i,7,k} for some k € [0,4n + 2] ~ {4, 7}. (It suffices to take k = wlif{i’j}(a:) (see Notation 2.1)).) Recall
that I' = Inv(4n + 3, P) for some pairing P of [0,4n + 2]cven (see Theorem [2.1]), and hence I' — e =
Inv(4n +3-e,Q) for some @ ¢ P. Clearly () = P iff k is odd. Since I" — e is indecomposable because U
is, Q| 26(4n+3—-¢).But 6(4n+3-¢€) =§(4n) =n+1 (see 2.1)) because 4n + 3—e = 4n. Since Q € P
and |P| = n+1, it follows that () = P and hence k € [1,4n + 1],qq. Therefore U € 7/ . This completes the
proof. L

, and z € supp(7T).

Proof of Theorem 2.4, Let n be an integer such that n > 2. We have to prove that {7 , 7, } is a partition
of Ty Clearly 7, # @ and T, # @. By the definitions of 7, and 7, (see Notation[2.3), a tournament of
?4;1 (resp. of fZl’T’L) is obtained from 4n by reversing a pairing (resp. a quasi-pairing). Therefore ?4’11 n Zfr’L =
@. By Lemmal6.1], to prove that Ty, = 7, U 7, we may prove instead that Ty, = Uy

Let U € Uy,. We have U = T — z for some T' € J3,,; and = € supp(T'). Let P be the subset of ([[O’;l”]])
such that 7" = Inv(4n+1, P). As T' € Jy,41, we have |P| = n + 1 (see Remark [2.1)). Because 7" — z is
indecomposable and 7' - = = Inv(4n + 1 — x, P') for some P’ ¢ P, we have 0(4n+1-x) < |P'| < |P|.
Since §(dn+1-x) = 6(4n) = n + 1 (see (2.1)) because 4n+1 — = = 4n, and since |P| = n + 1, it
follows that P’ = P. Since U = T—z and T — x = Inv(4n + 1 — 2, P), we obtain U = Inv(4n, Pr_,)
(see Notation 2.T). Because U is indecomposable and |Pr_,| = |P| = n + 1, it follows that U € J,, (see
Remark 2.1)).

Conversely, let U € Jy,. To prove that U € Uy, we consider the subset () of (V(;l—”)) such that U =
Inv(4n, Q). We have || = n+ 1 (see Remark 2.1)) and |u Q| € {2n + 1,2n + 2} (see Fact[3.1i2). Thus, @
is a pairing or a quasi-pairing of u(). Consider the A-decomposition D := {{0}, {dn—-1}}u{{2i-1,2i}:
1<i<2n -1} of 4n (see Example 3.1)). By Fact B.II(D),

u( is a transversal of D. (6.4)

In particular, {0,4n — 1} € uQ. So consider the nonempty intersection X := [1,4n — 1]oqq N (UQ). Let p
denote min(X). If p = 1, then {0, 1} cuQ. If p > 1, then since {p-2,p—1} € D and p - 2 ¢ UQ) because
p = min(X), it follows from (6.4) that {p — 1,p} € uQ. Thus in all cases

{p-1,p} cuQ. (6.5)

Consider the tournament I" obtained from U by adding one new vertex (p — %) in the following manner:
I'=Inv(W,Q), where W := [0,4n—-1]u{p-3}. Note that U = I'~ (p—3). Now consider the tournament
T :=I'. By construction, we have U = T - p. Since U is indecomposable, so to prove that U € Uy, it
remains only to prove that 7" € Jy,,,1. Since I' = Inv(WW, ) and W =4n+1,wehave T = Inv(4n +1, @p)
(see Notation 2.1)). Since |@p| =|Q| =n + 1, so by Remark 2.1} to prove that 7" € 74,1, we only have to
show that 7" is indecomposable, or, equivalently, that I' is indecomposable.
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Since U = Inv(4n, Q) is indecomposable, and since () is a pairing or a quasi-pairing of U@, it follows
from Theorems [3.1] and [3.2] that @ is irreducible and that U is a transversal of mc(4n). Moreover,
because

me(4n) U {{p-Lp-3}{p-5.0}} ifpe[3,4n 3o,
mc(W) = <me(4n) u {{3,1}} ifp=1,

me(4n) v {{4n-2,4n - 3}} ifp=4n—-1,
and UQ is a transversal of mc(4n), it follows from (6.3) that U( is also a transversal of mc(1W). Thus,
() is an irreducible pairing or quasi-pairing of a transversal of mc(WW). If @ is a pairing, it follows
from Theorem [3.1] that the tournament Inv(W, )), which is I, is indecomposable as desired. To finish,
suppose that () is a quasi-pairing. By Theorem [3.2] at least one of the tournaments I, I" - Vg or I'- vg? 1S
indecomposable. To show that both " - Vg and ' - vg? are decomposable, which implies that [' is again
indecomposable, consider v € {vé,vé}. As T' = Inv(W,Q), we have I' — v = Inv(W - v, P) where
P =Q~ {{v,09}}. Since |P| = |Q| -1 = n, and since 6(W -v) = 6(4n) = n + 1 (see (2.1)) because
W - v 2 4n, we obtain |P| < §(J/ - v) and hence I' - v is decomposable. Thus, both I' — v, and I' - v
are decomposable. Therefore 7' is indecomposable. ]
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