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ABSTRACT. The Slater index (resp. decomposability index) of a tournament is the minimum number of arcs that must
be reversed in that tournament in order to make it a total order (resp. indecomposable (under modular decomposition)).
The first author [H. Belkhechine, Decomposability index of tournaments, Discrete Math. 340 (2017) 2986–2994] showed
that for every integer n ≥ 5, the decomposability index of the n-vertex total order equals ⌈n+1

4
⌉. It follows that the Slater

index of an indecomposable n-vertex tournament is at least ⌈n+1
4
⌉. This led A. Boussaïri to ask the following question

during the thesis defense of the second author on July 2, 2021: what are the indecomposable tournaments T whose Slater
index is minimum over all indecomposable tournaments with the same vertex set as T? These tournaments are then the
indecomposable tournaments T obtained from a total order by reversing exactly ⌈ v(T )+1

4
⌉ arcs, where v(T ) is the number

of vertices of T . In this paper, we characterize such tournaments by means of so-called irreducible pairings.
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1. Introduction

The structures we consider are principally tournaments, total orders, and pairings, all of them are
finite. We consider the following classical problem: what is the minimum number of arcs that must be
reversed in a tournament in order to transform it into a tournament satisfying a given property? This
general issue has been considered by several authors under different properties and considerations (see
e.g., [1, 2, 5, 11, 12, 14, 17, 20, 24, 27]). In this paper, we consider the problem within two properties:
transitivity and indecomposability (under modular decomposition). We identify transitive tournaments
with total orders.

The Slater index of a tournament is the minimum number of arcs that must be reversed in that tourna-
ment in order to make it a total order. This index was introduced by P. Slater [27] in 1961. It was also
extensively studied by several authors under various aspects (combinatorial, algorithmic, etc.), see e.g.,
[1, 2, 11, 12, 14, 17].

On the other hand, the decomposability index of a tournament (with at least five vertices) was intro-
duced in 2017 by the first author in [4] as the minimum number of arcs that must be reversed in that
tournament in order to make it indecomposable. The reason we restrict this index to tournaments with at
least five vertices is that tournaments with four vertices are all decomposable. This index has also been
studied by the first two authors in [5], and by the second author in [7]. In [5], the authors proved that
the maximum value of the decomposability index over the n-vertex tournaments equals ⌈n+14 ⌉. In [7], the
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second author characterized the class of tournaments T whose decomposability index is maximum over
the tournaments with the same number of vertices as T . In fact, by the result of [5], these tournaments
are precisely the tournaments with decomposability index ⌈v(T )+14 ⌉. Moreover, the total orders (with at
least five vertices) are part of these tournaments [5, 7].

The results above give rise to the following relationship between indecomposability and Slater index:
given an integer n ≥ 5, the minimum value of the Slater index over indecomposable n-vertex tournaments
is ⌈n+14 ⌉, which also is the maximum value of the decomposability index over all n-vertex tournaments.
Moreover, the indecomposable n-vertex tournaments with minimum Slater index (i.e., whose Slater in-
dex is minimum over all indecomposable n-vertex tournaments) are the indecomposable tournaments
obtained from n-vertex total orders by reversing exactly ⌈n+14 ⌉ arcs. These results were presented by the
second author during her thesis defense on July 2, 2021, which led A. Boussaïri, who was rapporteur for
the thesis, to ask about the structure of the indecomposable tournaments with minimum Slater index. In
this paper, we describe these tournaments in terms of irreducible pairings of total orders. In our previous
work [6], we established fundamental results that underpin this study. Indeed, the primary motivation for
[6] was to lay the necessary groundwork for the current manuscript.

The paper is organized as follows. In Section 2, we present our characterization of indecomposable
tournaments T with minimum Slater index by describing them according to the residue of v(T ) modulo
4 (Theorems 2.1–2.4). Further notions and tools related to indecomposability are presented in Section 3.
We prove Theorems 2.1–2.2 in Section 4, Theorem 2.3 in Section 5, and Theorem 2.4 in Section 6.

2. Preliminaries and main results

A tournament T = (V (T ),A(T )) consists of a finite set V (T ) of vertices together with a set A(T )
of ordered pairs of distinct vertices, called arcs, such that for every x ≠ y ∈ V (T ), (x, y) ∈ A(T ) if
and only if (y, x) ∉ A(T ). The size of T , denoted by v(T ), is that of V (T ). Given a tournament T , the
subtournament of T induced by a subset X of V (T ) is the tournament T [X] ∶= (X,A(T ) ∩ (X ×X)).
For X ⊆ V (T ), the subtournament T [V (T ) ∖X] is also denoted by T −X , and by T − x when X is the
singleton {x}. Two tournaments T and T ′ are isomorphic, written T ≅ T ′, if there exists an isomorphism
from T onto T ′, i.e., a bijection f from V (T ) onto V (T ′) such that for every x ≠ y ∈ V (T ), (x, y) ∈ A(T )
if and only if (f(x), f(y)) ∈ A(T ′). This paper is based on two specific types of tournaments: total orders
and indecomposable tournaments.

A total order is a transitive tournament, that is, a tournament T such that for every x, y, z ∈ V (T ), if
(x, y) ∈ A(T ) and (y, z) ∈ A(T ), then (x, z) ∈ A(T ). We identify a transitive tournament T with the
set V (T ) totally ordered as follows: for every x, y ∈ V (T ), x < y when (x, y) ∈ A(T ). Given a totally
ordered set V , when the total ordering ≤ on V is implicitly understood, the total order (V,{(x, y) ∈
V × V ∶ x < y}) is denoted by V . In this context, V and V are often used interchangeably. Since we only
consider finite structures, we may assume that V is a subset of N totally ordered by the natural order on
integers. When V = {0, . . . , n − 1} for some positive integer n, the total order V is simply denoted by
n. Note that for purely technical reasons, we sometimes need to extend n by inserting rational numbers
between consecutive integers. In this instance, the resulting extension W consists of a subset W of Q+
with the natural order on rational number induced by W .
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The notion of indecomposability relies on that of a module. The notion of module generalizes to all
tournaments the usual notion of interval in a total order. Recall that an interval of a totally ordered set V
is a subset I of V such that every element v in V ∖ I is greater than all the elements of I or smaller than
all of them. Analogously, we define a module of a tournament T to be a subset M of V (T ) such that for
every vertex v in V (T ) ∖ M , we have {v} ×M ⊆ A(T ) or M × {v} ⊆ A(T ). Observe that the notions
of module and interval clearly coincide for total orders. The notion of module generalizes also to other
combinatorial structures such as graphs and digraphs [19], binary relational structures [26], 2-structures
[15], and hypergraphs [9]. It appears in the literature under various names such as interval [19], convex
subset [16], partitive subset [30], autonomous set [10], clan [15], and, of course, module [13].

We now come to the notion of indecomposability. Let T be a tournament. The empty set ∅, the entire
vertex set V (T ), and its singleton subsets are clearly modules of T , called trivial modules. The tour-
nament T is indecomposable [30] (or prime [13] or primitive [15] or simple [16]) if all its modules are
trivial; otherwise it is decomposable. Let us consider some examples. The tournaments of sizes at most 2
are clearly indecomposable. Up to isomorphism, the 3-vertex tournaments are the total order 3, which is
decomposable, and the 3-cycle C3 ∶= ({0,1,2},{(0,1), (1,2), (2,0)}), which is indecomposable. Up to
isomorphism, there are exactly four 4-vertex tournaments, all of them are decomposable (see e.g., [23]).
For sizes at least 5, it is well-known that there exist indecomposable n-vertex tournaments for every n ≥ 5

(see e.g., [4]). In fact, Erdős et al. [16] proved that almost all tournaments are indecomposable. However,
the total orders of sizes at least 3 are all decomposable. Let T be an indecomposable tournament. A
vertex x of T is said to be critical if T − x is decomposable. The support of T is the set of its noncritical
vertices; it is denoted by supp(T ).

This paper relies on two reversal indices for tournaments, based on transitivity and indecomposability.
We use the following notation. Given a set V , for a nonnegative integer k, we denote by (Vk) the set of
all k-element subsets of V . To every tournament T with a subset P of (V (T )2 ), we associate the tour-
nament Inv(T,P ) obtained from T by reversing P , i.e., by reversing all the arcs (x, y) ∈ A(T ) such
that {x, y} ∈ P . Thus, Inv(T,P ) = (V (T ),A(T ) ∖ ({(x, y) ∈ A(T ) ∶ {x, y} ∈ P}) ∪ {(x, y) ∶ {x, y} ∈
P and (x, y) ∉ A(T )}). For example, the dual tournament of T is the tournament T ⋆ ∶= Inv(T, (V (T )2 )).
Note that (Inv(T,P ))⋆ = Inv(T ⋆, P ). Moreover T and T ⋆ have the same modules; in particular T is
indecomposable if and only if T ⋆ is indecomposable. In the proof of Theorem 2.4, these remarks justify
that a tournament can be interchanged with its dual.

Let T be a tournament. The Slater index of T is the smallest integer m for which there exists a subset
P of (V (T )2 ) such that ∣P ∣ = m and Inv(T,P ) is a total order. The resulting total order Inv(T,P ) is called
a median order of T . When v(T ) ≠ 4, we also define the decomposability index of the tournament T as
the smallest integer m for which there exists a subset P of (V (T )2 ) such that ∣P ∣ = m and the tournament
Inv(T,P ) is indecomposable. The Slater index and the decomposability index of the tournament T are
denoted by s(T ) and δ(T ), respectively. The Slater index is clearly well-defined for all tournaments.
But the decomposability index is well-defined only for tournaments with sizes other than 4, because,
as observed above, the set of integers n for which there exist indecomposable n-vertex tournaments
is N ∖ {4}. For convenience, we omit the few tournaments with sizes at most 3, and we consider the
decomposability index only for tournaments with at least five vertices. Let n be an integer with n ≥ 5. The
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first author [4] proved that δ(n) = ⌈n+14 ⌉. Now let s(n) be the minimum of s(T ) over the indecomposable
tournaments T of size n. Clearly s(n) = δ(n). Since δ(n) = ⌈n+14 ⌉, we obtain

s(n) = δ(n) = ⌈n + 1

4
⌉ . (2.1)

We are interested in the indecomposable tournaments with minimum Slater index, that is, the indecom-
posable tournaments T whose Slater index is minimum over the indecomposable tournaments with the
same size as T . By (2.1), these tournaments are the indecomposable tournaments T with Slater index
s(T ) = ⌈v(T )+14 ⌉, or, equivalently, the indecomposable tournaments T obtained from a total order by re-

versing exactly ⌈v(T )+14 ⌉ arcs. The purpose of this paper is to characterize such tournaments (Theorems
2.1–2.4). Their structure is closely related to the notion of so-called irreducible pairings in total orders.
In fact, almost all of them are obtained from total orders by reversing irreducible pairings. Given a totally
ordered set V , a partition P of V (or of V ) is irreducible [3, 8] (or connected [22]) if no nontrivial interval
of V is a union of some blocks of P ; otherwise it is reducible. (Recall that the blocks of a partition are
the sets constituting this partition.) The partitions we need are primarily pairings, i.e., partitions whose
blocks have size 2. However, we also consider another closely related type of partitions in which one
block has size 3 and all other blocks have size 2. An irreducible pairing [28, 29] is then an irreducible
partition whose blocks are unordered pairs. The study of irreducible pairings goes back at least to the
1950s. It seems that Touchard [31, 32] was the first author to consider and study these configurations,
which he called proper systems. This name is no longer used, but the notion has been reconsidered by
several authors under other names such as irreducible pairings [28, 29], irreducible diagrams [21], and
linked diagrams [3, 25]. For example, Kleitman [21] found that the proportion of irreducible pairings
among all pairings of 2n is asymptotically e−1 (see also [18]).

Given a set V (of even or odd size), a pairing of a subset (of even size) of V is called a partial pairing
of V . Note that a partial pairing P is a pairing of the union ∪P of all the blocks of P . Given an integer
m ≥ 5, when m ≡ 3 or 2 (mod 4), we will see that all the m-vertex indecomposable tournaments with
minimum Slater index are, up to isomorphism, obtained from m by reversing some irreducible partial
pairings of m (Theorems 2.1–2.2). Since our description of indecomposable tournaments with minimum
Slater index is based on irreducible pairings of certain vertex subsets, it is practical to construct these
tournaments on vertex sets which are initially totally ordered. Such tournaments, i.e. tournaments whose
vertex sets are totally ordered, are called ordered tournaments. For this reason, it is convenient for the
vertex sets to be subsets of N, implicitly ordered by the natural total order on integers. We then introduce
the following notations. Let p and q be two nonnegative integers. We denote by �p, q�, �p, q�, �p, q�,
and �p, q� the intervals of N defined as follows: �p, q� ∶= {i ∈ N ∶ p ≤ i ≤ q}; �p, q�∶= �p, q� ∖ {q};
�p, q� ∶= �p, q�∖{p}; and �p, q�∶= �p, q�∖{p, q}. Note that when p > q, the interval �p, q� is the empty set.
For X ⊆ N, the set of even (resp. odd) integers in X is denoted by Xeven (resp. Xodd).

For every integer n ≥ 5, we denote by Tn the (finite) set of indecomposable n-vertex tournaments T

whose vertex set is V (T ) ∶= �0, n − 1� and whose Slater index is minimum over the tournaments of
size v(T ) (or, equivalently, over the tournaments with vertex set V (T )). By (2.1), Tn is the family of
indecomposable tournaments with vertex set �0, n − 1� and Slater index ⌈n+14 ⌉. We also consider the
subset of Tn, which we denote by Tn, whose elements are the tournaments of Tn for which n is a median
order. In other words,
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Remark 2.1. Tn is the family of indecomposable tournaments obtained from n by reversing exactly δ(n)
arcs, that is, exactly ⌈n+14 ⌉ arcs (see (2.1)).

Clearly, every tournament of the family Tn is isomorphic to a tournament of its subfamily Tn. We
therefore elect to characterize the tournaments of the families Tm, m ≥ 5. These tournaments are shown
in Figure 1 for small values of m (m ∈ {5,6,7}).

We describe the families Tm, m ≥ 5, according to the modulo 4 residue of m. We begin with m ≡ 3

(mod 4). We obtain the following theorem.

Convention. Let T be a tournament. For X ⊆ V (T ), X denotes V (T ) ∖X .

Theorem 2.1. For every positive integer n, the tournaments of the family T4n+3 are the tournaments
Inv(4n + 3, P ), where P is an irreducible pairing of �0,4n + 2�even. Moreover, for every tournament
T ∈ T4n+3 and for every e ⊆ �1,4n + 1�odd such that ∣e∣ ≥ 5, the tournament T − e is indecomposable.

For example, Inv(7,{{0,4},{2,6}}) is the unique tournament of the family T7 (see Figure 1).
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Figure 1. The tournaments of the families T5, T6, and T7 (undrawn arcs belong to A(7)).

We will see that, up to isomorphism, the tournaments of the families T4n+2, T4n+1 (n ≥ 1), and T4n (n ≥
2) are obtained from those of the family T4n+3 (described in Theorem 2.1) by small modifications. These
modifications consist of deleting one to three vertices with, in a few cases, a minor adjustment consisting
of reversing only one arc. For example, we prove that for every positive integer n, the tournaments of
the family T4n+2 are, up to isomorphism, obtained from those of the family T4n+3 by deleting one odd
vertex. These tournaments are isomorphic to the tournaments of the family T4n+2, but do not belong to
this family. We then need to proceed with a relabeling of the vertices to bring these tournaments into
the family T4n+2. The situation is similar for the families T4n+1 and T4n. To describe the appropriate
relabelings in a canonical way, we use the following notations.

Notation 2.1 (Canonizations). Let T = (V,A) be a tournament, and let F be a family of subsets of V .
Given a bijection π from V onto a set W , we denote by π(T ) the tournament (W,π(A)), where π(A) ∶=
{(π(x), π(y)) ∶ (x, y) ∈ A}. Note that π is an isomorphism from T onto π(T ). We also denote by π(F)
the family {π(F ) ∶ F ∈ F}, where π(F ) ∶= {π(x) ∶ x ∈ F}. We mainly need such notations when T

is an ordered tournament, especially when V ⊆ N. In this case, let πT (or πV ) denote the isomorphism
from V onto v(T ), i.e. the strictly increasing function from V onto �0, v(T ) − 1�. We then consider the
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tournament πT (T ) (resp. the family πT (F)) as the canonical form of the tournament T (resp. the family
F). We denote the canonical forms πT (T ) and πT (F) by T̃ and F̃T , respectively. For example, given
P ⊆ (V2), we have ̃Inv(T,P ) = Inv(T̃ , P̃T ). Moreover, P is a pairing (resp. an irreducible pairing) of ∪P
if and only if P̃T is a pairing (resp. an irreducible pairing) of ∪P̃T . Similarly, P is a partition (resp. an
irreducible partition) of ∪P if and only if P̃T is a partition (resp. an irreducible partition) of ∪P̃T .

We now describe the families T4n+2, n ≥ 1, in the following theorem.

Theorem 2.2. For every positive integer n, the tournaments of the family T4n+2 are the tournaments
T̃ − x, where T ∈ T4n+3 and x ∈ �1,4n + 1�odd.

For example, for n = 1, the three tournaments of the family T6 are shown in Figure 1.

Observe that for an integer n ≥ 1, all the tournaments of the family T4n+3 are obtained from 4n + 3 by
reversing some specific partial pairings of 4n + 3 (see Theorem 2.1). Similarly, all the tournaments of
the families T4n+2, n ≥ 1, are obtained from 4n + 2 by reversing some specific partial pairing of 4n + 2

(see Theorem 2.2). But this observation no longer holds for the families T4n+1 (n ≥ 1) and T4n (n ≥ 2).
In fact, given a positive integer n, certain tournaments of the family T4n+1 (resp. T4n, n ≥ 2) are obtained
from 4n + 1 (resp. 4n) by reversing quasi-pairings instead of pairings. The notion of quasi-pairing is an
extension of that of pairing to sets of odd sizes. Let W be a set of size 2n+1 with n ≥ 1. A quasi-pairing
of W is a cover of W by a family of n + 1 unordered pairs of W , i.e., a subset Q of (W2 ) such that
∣Q∣ = n + 1 and ∪Q = W . When W is a subset of a set V (of odd or even size), a quasi-pairing of W
is also called a partial quasi-pairing of V . Let Q be a partial quasi-pairing of a totally ordered set V
(of size at least 3). We denote by v̂Q, v−Q, and v+Q the unique elements of ∪Q such that {v̂Q, v−Q} ∈ Q,
{v̂Q, v+Q} ∈ Q, and v−Q < v+Q. Moreover, the 3-element set {v̂Q, v−Q, v+Q} is denoted by BQ.

Let n be a positive integer. We need some additional notations to describe the tournaments of the family
T4n+1, that we partition into two subfamilies T′4n+1 and T′′4n+1 (see Notation 2.2 and Theorem 2.3). Let
V be a set (of even or odd size). With every partial pairing P of V , we associate the involution without
fixed points of ∪P , which we denote by iP , defined by iP (B) = B for every block B ∈ P . This defines
a natural one-to-one correspondence between partial pairings of V and involutions without fixed points
of subsets (of even sizes) of V . Now let V be a totally ordered set (of size at least 3) and let Q be a
partial quasi-pairing of V . Given x ∈ V , the vertex subset {y ∈ ∪Q ∶ {x, y} ∈ Q} is denoted by ιQ(x).
So ιQ(v̂Q) = {v−Q, v+Q}, and for every x ∈ (∪Q) ∖ {v̂Q}, we have ∣ιQ(x)∣ = 1 and the (unique) element of
ιQ(x) is denoted by iQ(x).

Notation 2.2. Let n be a positive integer.

• We denote by T′4n+1 the set of tournaments T̃ − e, where T ∈ T4n+3 and e ∈ (�1,4n+1�odd
2 ).

• To every tournament T ∈ T4n+3 with a vertex x ∈ �1,4n + 1�odd, we associate the tournament
T(x) ∶= Inv(T −{x, x+ 1},{{x− 1, iP (x+ 1)}}), where P is the pairing of �0,4n+ 2�even such that
T = Inv(4n + 3, P ) (see Theorem 2.1). We now denote by T′′4n+1 the set of tournaments T̃(x), where
T ∈ T4n+3 and x ∈ �1,4n + 1�odd.

The tournaments of the families T′′4n+1, n ≥ 1, can also be expressed in terms of quasi-pairings (see
Remark 2.2 below).
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Remark 2.2. Consider a tournament T ∈ T′′4n+1. We have T = Ũ(x) for some tournament U ∶=
Inv(4n + 3, P ) ∈ T4n+3 and x ∈ �1,4n + 1�odd (see Notation 2.2). So there exists a unique quasi-pairing
Q of �0,4n�even such that T = Inv(4n + 1,Q). Moreover, we have v̂Q = x − 1, v−Q = min(π(iP (x −
1)), π(iP (x+1))), v+Q = max(π(iP (x−1)), π(iP (x+1))), and hence BQ = {x−1, π(iP (x−1)), π(iP (x+
1))}, where π = πU(x) (see Notation 2.1).

Theorem 2.3. For every positive integer n, we have T4n+1 = T′4n+1∪T′′4n+1. More precisely, {T′4n+1,T′′4n+1}
is a partition of T4n+1.

Theorem 2.3 says that for every positive integer n, the family T4n+1 consists of tournaments obtained
from 4n + 1 by reversing some partial pairings of 4n + 1 (the tournaments of T′4n+1), as well as tourna-
ments obtained from 4n + 1 by reversing some quasi-pairings of �0,4n�even (the tournaments of T′′4n+1,
see Remark 2.2). For n = 1, the six tournaments of the family T5 are shown in Figure 1.

At present, the families Tm, m ≥ 5, are characterized for m ≡ 3, 2 or 1 (mod 4). So it only remains to
characterize the families T4n, n ≥ 2. Let n be an integer with n ≥ 2. As we did with the family T4n+1, we
will partition the family T4n into two subfamilies T′4n and T′′4n (see Notation 2.3 and Theorem 2.4). We
first need the following lemma.

Lemma 2.1. Let T be a tournament of the family T′′4n+1, where n ≥ 2, and let P be the quasi-pairing of
�0,4n�even such that T = Inv(4n + 1, P ) (see Remark 2.2). We have

supp(T ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�1,4n − 1�odd ∖ {min(BP ) + 1} if min(BP ) + 2 ∈ BP ,

�1,4n − 1�odd ∖ {max(BP ) − 1} if max(BP ) − 2 ∈ BP ,

�1,4n − 1�odd otherwise.

(2.2)

Remark 2.3. To see that (2.2) is well-defined, it suffices to show that min(BP ) + 2 ∈ BP and
max(BP ) − 2 ∈ BP cannot occur simultaneously. So suppose to the contrary that min(BP ) + 2 ∈ BP

and max(BP ) − 2 ∈ BP . Since ∣BP ∣ = 3, it follows that min(BP ) + 2 = max(BP ) − 2 and hence
BP = {min(BP ),min(BP ) + 2,min(BP ) + 4}. Since T = Inv(4n + 1, P ) and P is a quasi-pairing
of �0,4n�even, it follows that �min(BP ),max(BP )� is a module of T , which is nontrivial because
∣�min(BP ),max(BP )�∣ = 5 and v(T ) ≥ 9. This contradicts that T is indecomposable.

Notation 2.3. Let n be an integer with n ≥ 2.

• We denote by T′4n the set of tournaments T̃ − e, where T ∈ T4n+3 and e ∈ (�1,4n+1�odd
3 ).

• We denote by T′′4n the set of tournaments T̃ − x, where T ∈ T′′4n+1 and x ∈ supp(T ) (see Lemma 2.1).

Theorem 2.4. For every integer n ≥ 2, we have T4n = T′4n ∪T′′4n. More precisely, {T′4n,T′′4n} is a partition
of T4n.

3. Basic tools

3.1. Co-modules, Δ-decompositions, and indecomposability

The notions of co-module and Δ-decomposition were introduced in [5] as follows. Given a tournament
T , a co-module of T is a subset M of V (T ) such that M or M is a nontrivial module of T . A co-module
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of T is minimal if it does not contain any other co-module. We denote by mc(T ) the family of minimal
co-modules of T . For example, for every integer n ≥ 3, we have

mc(n) = {{0},{n − 1}} ∪ {{i, i + 1} ∶ 1 ≤ i ≤ n − 3}, (3.1)

and for any totally ordered set V with ∣V ∣ = n, we have mc(V ) = π−1V (mc(n)) (see Notation 2.1).

A co-modular decomposition of a tournament T is a set of pairwise disjoint co-modules of T . A Δ-
decomposition of T is a co-modular decomposition of T which is of maximum size. Such a size is called
the co-modular index of T , and is denoted by Δ(T ). The first two authors [5] showed that for every
integer n ≥ 3, we have

Δ(n) = ⌈n + 1

2
⌉ . (3.2)

Note that we need the notions of co-module and Δ-decomposition only in the particular case of total
orders, instead of general tournaments.

Example 3.1. Given an integer n ≥ 3, it follows from (3.1) and (3.2) that D1 ∶= {{0},{n − 1}} ∪ {{2i −
1,2i} ∶ 1 ≤ i ≤ ⌊n−22 ⌋} is a Δ-decomposition of n. Moreover, when n is odd, D2 ∶= {{0},{n − 1}} ∪
{{2i,2i + 1} ∶ 1 ≤ i ≤ ⌊n−22 ⌋} is another Δ-decomposition of n.

Given a set family F, a transversal of F is any set R that intersects each element of F, that is, such that
F ∩R ≠ ∅ for every F ∈ F. A transversal R of F is exact if ∣F ∩R∣ = 1 for every F ∈ F. The following
fact shows the involvement of the aforementioned notions in the class of indecomposable tournaments
with minimum Slater index.

Fact 3.1. Let V be a finite totally ordered set with ∣V ∣ = n ≥ 5, and let P be a subset of (V2).

1. If the tournament Inv(V ,P ) is indecomposable, then ∪P is a transversal of the family of all co-
modules of V , and hence a transversal of mc(V ).

2. Let q ∈ N ∖ {0} and r ∈ {0,1,2,3} be the (unique) integers such that n = 4q + r. If ̃Inv(V ,P ) ∈ Tn,
then

∣ ∪P ∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
2q + 2 if r ∈ {2,3},
2q + 1 or 2q + 2 if r ∈ {0,1}.

(3.3)

Proof. We may assume V = �0, n − 1� and V = n. If (∪P ) ∩M = ∅ for a co-module M of n, then M

remains a co-module in Inv(n,P ), and hence Inv(n,P ) is decomposable. Therefore, the first assertion
holds. For the second assertion, suppose Inv(n,P ) ∈ Tn. In this instance, ∣P ∣ = ⌈n+14 ⌉ (see Remark 2.1)
and hence ∣ ∪ P ∣ ≤ 2 ⌈n+14 ⌉. Now consider a Δ-decomposition D of n. Since ∣D∣ = Δ(n) = ⌈n+12 ⌉ (see
(3.2)), and the elements of D are pairwise disjoint co-modules of n, it follows from the first assertion
that ∣ ∪ P ∣ ≥ ⌈n+12 ⌉. Thus ⌈n+12 ⌉ ≤ ∣ ∪P ∣ ≤ 2 ⌈n+14 ⌉, and hence (3.3) holds.

3.2. Indecomposability and irreducibility

We obtained Theorems 3.1–3.3 below in [6]. These theorems form basic tools in our proofs of The-
orems 2.1–2.4. Theorem 3.1 provides a characterization of indecomposable tournaments obtained from
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total orders by reversing partial pairings. Theorems 3.2 and 3.3 are analogues of Theorem 3.1 for quasi-
pairings under the following mode of irreducibility. Let Q be a quasi-pairing of a totally ordered set V
of odd size at least 3. We denote by Qpart the partition of V obtained from Q by merging {v̂Q, v−Q} and
{v̂Q, v+Q}, that is, Qpart ∶= (Q ∖ {{v̂Q, v−Q},{v̂Q, v+Q}}) ∪ {BQ}. The quasi-pairing Q is irreducible if the
partition Qpart is irreducible; otherwise it is reducible.

Theorem 3.1 ([6]). Let V be a finite totally ordered set such that ∣V ∣ ≥ 5, and let P be a partial pairing
of V . The following assertions are equivalent.

1. The tournament Inv(V ,P ) is indecomposable.

2. The partial pairing P of V is an irreducible pairing of a transversal of mc(V ).

Theorem 3.2 ([6]). Let V be a finite totally ordered set such that ∣V ∣ ≥ 6, and let Q be a partial quasi-
pairing of V . Consider the tournament T ∶= Inv(V ,Q). The following assertions are equivalent.

1. The partial quasi-pairing Q of V is an irreducible quasi-pairing of a transversal of mc(V ).

2. At least one of the tournaments T , T − v−Q, or T − v+Q is indecomposable.

Moreover, the second assertion still implies the first one when ∣V ∣ = 5.

In Theorem 3.2, the first condition is necessary but not sufficient for the tournament T to be indecom-
posable, necessitating additional conditions. This leads us to the next theorem characterizing indecom-
posable tournaments obtained from total orders by reversing partial quasi-pairings.

Theorem 3.3 ([6]). Given an integer m with m ≥ 5, consider a partial quasi-pairing Q of m. The
tournament Inv(m,Q) is indecomposable if and only if the following conditions are satisfied.

(C1) The partial quasi-pairing Q of m is an irreducible quasi-pairing of a transversal of mc(m).

(C2) v+Q ≥ v−Q + 2.

(C3) Given v ∈ V (m), if {{v, v + 2},{v + 1, v + 3}} ⊆ Q, then v̂Q ∈ {v, v + 3}.

(C4) Given v ∈ V (m), if {v, v + 1} ∈ Q, then v̂Q ∈ {v, v + 1} and {v̂Q − 1, v̂Q + 1} ⊆ ∪Q (in particular
v̂Q ∉ {0,m − 1}).

4. Proofs of Theorems 2.1 and 2.2

We begin with the following simple but useful fact.

Fact 4.1. Let n be an integer with n ≥ 3.

1. If n is odd, then �0, n − 1�even is a transversal of mc(n).

2. Given X ⊆ V (n), if X is a transversal of mc(n), then X is also a transversal of mc(n − e) for
every subset e of X .
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Proof. The first assertion follows directly from (3.1). For the second one, consider a transversal X of
mc(n), and let e be a subset of X . Since X is a transversal of mc(n), we have {0, n−1} ⊆ X (see (3.1)),
and hence {{0},{n − 1}} ⊆ mc(n − e). Now let C ∈ mc(n − e). We have to prove that X ∩ C ≠ ∅. If
C ∈ mc(n), then X ∩C ≠ ∅ because X is a transversal of mc(n). Now suppose C ∈ mc(n− e) ∖mc(n).
Note that n − e ≅ n − ∣e∣, and hence (3.1) applies to n − e. Since {{0},{n − 1}} ⊆ mc(n − e), it follows
from (3.1) applied to n − e that C = {p, q} with 1 ≤ p ≤ q − 2 ≤ n − 4. Moreover p + 1 ∉ X . Since
{p, p + 1} ∩ X ≠ ∅ because X is a transversal of mc(n), it follows that p ∈ X and hence X ∩ C ≠ ∅.
Therefore, X is a transversal of mc(n − e).

Proof of Theorem 2.1. Let n be a positive integer and let P be an irreducible pairing of �0,4n + 2�even.
Consider the tournament T ∶= Inv(4n + 3, P ). Let e be a (possibly empty) subset of �1,4n + 1�odd such
that ∣e∣ ≥ 5. By Fact 4.1, �0,4n+2�even is a transversal of mc(4n + 3−e). Since T −e = Inv(4n + 3−e,P )
and P is an irreducible pairing of the transversal �0,4n + 2�even of mc(4n + 3 − e), it follows from
Theorem 3.1 that the tournament T − e is indecomposable. In particular, T is indecomposable. Since
∣P ∣ = n + 1, it follows that T ∈ T4n+3 (see Remark 2.1).

Conversely, let n be a positive integer and let T ∈ T4n+3. There exists P ⊆ (V (4n+3)2 ) such that ∣P ∣ = n+1
and T = Inv(4n + 3, P ) (see Remark 2.1). We will prove that P is a pairing of �0,4n + 2�even, and
that this pairing is irreducible. By Fact 3.1(2), we have ∣ ∪ P ∣ = 2n + 2. On the other hand, D1 ∶=
{{0},{4n + 2}} ∪ {{2i − 1,2i} ∶ 1 ≤ i ≤ 2n} and D2 ∶= {{0},{4n + 2}} ∪ {{2i,2i + 1} ∶ 1 ≤ i ≤ 2n}
are Δ-decompositions of 4n + 3 (see Example 3.1). Since T is indecomposable, then by Fact 3.1(1), the
union ∪P is a transversal of mc(4n + 3) and hence of D1 ∪ D2. Since ∣D1∣ = ∣D2∣ = ∣ ∪ P ∣ = 2n + 2, it
follows that

∪P is an exact transversal of D1 ∪D2. (4.1)

Moreover ∪P ⊆ ∪D1. In particular 4n + 1 ∉ ∪P . Since the elements of P are pairwise disjoint because
∣ ∪ P ∣ = 2∣P ∣, to prove that P is a pairing of �0,4n + 2�even, it suffices to show that ∪P = �0,4n + 2�even.
So suppose for a contradiction that ∪P ≠ �0,4n+2�even. Since ∣ ∪P ∣ = ∣�0,4n+2�even∣, it follows that the
intersection X ∶= �1,4n+1�odd∩(∪P ) is nonempty. So let p denote max(X). Note that {p+1, p+2} ∈ D2.
Since 4n + 1 ∉ ∪P , we have p < 4n + 1 and {p, p + 1} ∈ D1. Now since 4n + 2 ∈ ∪P (see (4.1)), the
intersection Y ∶= �p + 1,4n + 2�even ∩ (∪P ) is nonempty. So let q denote min(Y ). If q = p + 1, we obtain
{p, p + 1} ⊆ ∪P , which contradicts (4.1) because {p, p + 1} ∈ D1. If q ≠ p + 1, i.e. q ≥ p + 3, we obtain
{p + 1, p + 2} ∩ (∪P ) = ∅, which again contradicts (4.1) because {p + 1, p + 2} ∈ D2. Therefore, P is
a pairing of �0,4n + 2�even. Moreover, since T is indecomposable, it follows from Theorem 3.1 that the
pairing P is irreducible.

Proof of Theorem 2.2. Let n be a positive integer. Consider T ∈ T4n+3, and let x ∈ �1,4n+1�odd. We have
to show that T̃ − x ∈ T4n+2. By Theorem 2.1, there exists an irreducible pairing P of �0,4n + 2�even such
that T = Inv(4n + 3, P ). Moreover, the tournament T −x is indecomposable. Since T −x = Inv(4n + 3−
x,P ) and ̃4n + 3 − x = 4n + 2, we have T̃ − x = Inv(4n + 2, P̃T−x) (see Notation 2.1). Since ∣P̃T−x∣ = ∣P ∣ =
δ(4n + 2), and T̃ − x is indecomposable because T − x is, it follows that T̃ − x ∈ T4n+2 (see Remark 2.1).

Conversely, let U ∈ T4n+2. We have to prove that U = T̃ − x for some T ∈ T4n+3 and x ∈ �1,4n + 1�odd.
Since U ∈ T4n+2, there exists P ⊆ (V (4n+2)2 ) such that ∣P ∣ = n+1 and U = Inv(4n + 2, P ) (see Remark 2.1).

Claim 1. There exists p ∈ �0,2n� such that P is an irreducible pairing of �0,2p�even∪ �2p+1,4n+1�odd.
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Proof of Claim 1. Since ∣ ∪ P ∣ = 2n + 2 = 2∣P ∣ (see Fact 3.1(2)), then P is a pairing of ∪P . Since U

is indecomposable, then by Theorem 3.1, the pairing P is irreducible. To show that ∪P = �0,2p�even ∪
�2p + 1,4n + 1�odd for some p ∈ �0,2n�, which completes the proof, we consider the Δ-decomposition
D ∶= {{0},{4n + 1}} ∪ {{2i − 1,2i} ∶ 1 ≤ i ≤ 2n} of 4n + 2 (see Example 3.1). By Fact 3.1(1), ∪P is a
transversal of mc(4n + 2) and hence of D. Since ∣D∣ = ∣ ∪ P ∣ = 2n + 2, it follows that

∪P is an exact transversal of D. (4.2)

In particular {0,4n + 1} ⊆ ∪P . Now consider the nonempty intersection X ∶= �1,4n + 1�odd ∩ (∪P ).
We have min(X) = 2p + 1 for some p ∈ �0,2n�. Take x ∈ �0,2p�even ∖ {0}. Since {x − 1, x} ∈ D, and
x − 1 ∉ ∪P because min(X) = 2p + 1, then x ∈ ∪P by (4.2). Since 0 ∈ ∪P and min(X) = 2p + 1,
it follows that �0,2p� ∩ (∪P ) = �0,2p�even. Now suppose for a contradiction that the intersection Y ∶=
�2p + 2,4n�even ∩ (∪P ) is nonempty. Let q denote min(Y ). If q = 2p + 2, then {2p + 1, q} ∈ D and
{2p+ 1, q} ⊆ ∪P , which contradicts (4.2). Therefore q ≥ 2p+ 4. Since {q − 1, q} ∈ D and q ∈ ∪P , then by
(4.2), q − 1 ∉ ∪P . Since {q − 2, q − 1} ∩ (∪P ) ≠ ∅ because ∪P is a transversal of mc(4n + 2) (see (3.1)),
it follows that q − 2 ∈ ∪P . As q ≥ 2p + 4, this implies q − 2 ∈ Y , contradicting q = min(Y ). Therefore
Y = ∅. Now the equality ∪P = �0,2p�even ∪ �2p + 1,4n+ 1�odd follows directly from the following facts:
∪P ∈ (�0,4n+1�

2n+2 ), �0,2p� ∩ (∪P ) = �0,2p�even, and Y = ∅.

We now consider the tournament Γ obtained from U by adding one new vertex (2p+ 1
2) in the following

manner: Γ = Inv(W,P ), where W ∶= �0,4n+1�∪{2p+ 1
2} (see Claim 1). Note that U = Γ−(2p+ 1

2). Now
consider the tournament T ∶= Γ̃. By construction, we have U = T̃ − x for x = 2p + 1. Since x ∈ �1,4n +
1�odd, it suffices to verify that T ∈ T4n+3 to conclude the proof. Since Γ = Inv(W,P ) and W̃ = 4n + 3,
then T = Inv(4n + 3, P̃Γ) (see Notation 2.1). Moreover, since by Claim 1, P is an irreducible pairing
of ∪P , we obtain that P̃Γ is an irreducible pairing of ∪P̃Γ (see Notation 2.1). But ∪P̃Γ = �0,4n + 2�even
because ∪P = �0,2p�even ∪ �2p + 1,4n + 1�odd and ∪P̃Γ = ∪π(P ) = π(∪P ), where π ∶= πΓ is the strictly
increasing function from V (Γ) onto �0,4n + 2� (see Notation 2.1). Thus, P̃Γ is an irreducible pairing of
�0,4n + 2�even. It follows from Theorem 2.1 that T ∈ T4n+3.

5. Proof of Theorem 2.3

We need the following technical lemma.

Lemma 5.1. Let n be a positive integer and let P be a subset of (V (4n+1)2 ) such that Inv(4n + 1, P ) ∈
T4n+1. Recall that ∣P ∣ = n + 1 (see Remark 2.1) and ∣ ∪ P ∣ ∈ {2n + 1,2n + 2} (see Fact 3.1(2)).

1. If ∣ ∪ P ∣ = 2n + 2, then there are p ≤ q ∈ �0,2n − 1� such that P is an irreducible pairing of
∪P = �0,2p�even ∪ �2p + 1,2q + 1�odd ∪ �2q + 2,4n�even.

2. If ∣ ∪ P ∣ = 2n + 1, then P is an irreducible quasi-pairing of ∪P = �0,4n�even.

Proof. We consider the Δ-decompositions D1 ∶= {{0},{4n}} ∪ {{2i − 1,2i} ∶ 1 ≤ i ≤ 2n − 1} and
D2 ∶= {{0},{4n}} ∪ {{2i,2i + 1} ∶ 1 ≤ i ≤ 2n − 1} of 4n + 1 (see Example 3.1). By Fact 3.1(1),

∪P is a transversal of D1 ∪D2. (5.1)
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For the first assertion, suppose ∣∪P ∣ = 2n+2. In this instance, P is a pairing of ∪P because ∣∪P ∣ = 2∣P ∣.
Moreover, since Inv(4n + 1, P ) is indecomposable, then by Theorem 3.1, the pairing P is irreducible.
Recall that 0 ∈ ∪P and 4n ∈ ∪P (see (5.1)). So consider, in �0,2n�, the largest integer p such that
�0,2p�∩ (∪P ) = �0,2p�even, and the smallest integer v such that �2v,4n�∩ (∪P ) = �2v,4n�even. If v ≤ p,
then ∪P = �0,4n�even and hence ∣ ∪ P ∣ = 2n + 1, a contradiction. Therefore 0 ≤ p ≤ q ≤ 2n − 1, where
q ∶= v − 1. We will prove that

∪P = �0,2p�even ∪ �2p + 1,2q + 1�odd ∪ �2q + 2,4n�even. (5.2)

If 2p + 1 ∉ ∪P , then 2p + 2 ∈ ∪P (see (5.1)) and hence �0,2p + 2� ∩ (∪P ) = �0,2p + 2�even, contradicting
the definition of p. Therefore 2p + 1 ∈ ∪P . Similarly, 2q + 1 ∈ ∪P . Thus,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�0,2p + 1� ∩ (∪P ) = �0,2p�even ∪ {2p + 1}
and

�2q + 1,4n� ∩ (∪P ) = �2q + 2,4n�even ∪ {2q + 1}.
(5.3)

It follows that (5.2) holds when q = p. Now suppose q ≥ p + 1. In this instance, it follows from (5.3) that
�0,2p + 1� ∩ (∪P ) and �2q + 1,4n� ∩ (∪P ) are disjoint with respective sizes p + 2 and 2n − q + 1. Since
∣ ∪ P ∣ = 2n + 2, it follows that

∣�2p + 2,2q� ∩ (∪P )∣ = q − p − 1. (5.4)

By (5.3), to obtain (5.2), it suffices to prove that �2p + 2,2q� ∩ (∪P ) = �2p + 2,2q�odd. Since ∣�2p +
2,2q�odd∣ = ∣�2p+2,2q�∩(∪P )∣ = q−p−1 (see (5.4)), it suffices to show that �2p+2,2q�even∩(∪P ) = ∅.
Let u ∈ �p+1, q�. To prove that 2u ∉ ∪P , consider D ∶= {d ∈ D2 ∶ d ⊆ �2p+2,2u�}∪{d ∈ D1 ∶ d ⊆�2u,2q�}.
Clearly ∣D∣ = q−p−1, and the elements of D are pairwise disjoint elements of D1∪D2. Thereby, it follows
from (5.1) that ∣(∪D) ∩ (∪P )∣ ≥ q − p− 1. Consequently, since ∪D = �2p + 2,2q�∖ {2u}, it follows from
(5.4) that 2u ∉ ∪P . Therefore �2p + 2,2q�even ∩ (∪P ) = ∅, completing the proof of the first assertion.

For the second assertion, suppose ∣ ∪P ∣ = 2n + 1. Since ∣D2∣ = 2n + 1, it follows from (5.1) that

∪P is an exact transversal of D2. (5.5)

Moreover ∪P ⊆ ∪D2. In particular 1 ∉ ∪P since 1 ∉ ∪D2. On the other hand, P is a quasi-pairing
of ∪P because ∣P ∣ = n + 1 and ∣ ∪ P ∣ = 2n + 1. Moreover, since Inv(4n + 1, P ) is indecomposable,
then by Theorem 3.2, the quasi-pairing P is irreducible. So to conclude the proof, it remains only to
show that ∪P = �0,4n�even. Suppose for a contradiction that the intersection X ∶= �0,4n�odd ∩ (∪P )
is nonempty. Let k denote min(X). We have k ≥ 3 because 1 ∉ ∪P . Therefore {k − 2, k − 1} ∈ D1.
Since k − 2 ∉ ∪P because k = min(X), we obtain k − 1 ∈ ∪P (see (5.1)). Thus {k − 1, k} ⊆ ∪P . Since
{k − 1, k} ∈ D2, this contradicts (5.5). Therefore ∪P ⊆ �0,4n�even. Since ∣�0,4n�even∣ = ∣ ∪ P ∣, it follows
that ∪P = �0,4n�even.

Proof of Theorem 2.3. Let n be a positive integer. We have to prove that {T′4n+1,T′′4n+1} is a partition of
T4n+1. Clearly T′4n+1 ≠ ∅, T′′4n+1 ≠ ∅, and T′4n+1 ∩ T′′4n+1 = ∅. We now prove that T4n+1 = T′4n+1 ∪ T′′4n+1.

Let U ∈ T4n+1. To prove that U ∈ T′4n+1 ∪ T′′4n+1, we consider the subset P of (V (4n+1)2 ) such that U =
Inv(4n + 1, P ). By Fact 3.1(2), we have ∣ ∪P ∣ ∈ {2n + 1,2n + 2}.

First suppose ∣ ∪ P ∣ = 2n + 2. By Lemma 5.1(1), there are p ≤ q ∈ �0,2n − 1� such that P is an
irreducible pairing of ∪P = �0,2p�even ∪ �2p + 1,2q + 1�odd ∪ �2q + 2,4n�even. We now consider the
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tournament Γ obtained from U by adding two new vertices 2p + 1
2 and 2q + 3

2 in the following manner:
Γ = Inv(W,P ), where W ∶= �0,4n�∪{2p+ 1

2 ,2q+ 3
2}. Note that U = Γ−{2p+ 1

2 ,2q+ 3
2}. Now consider the

tournament T ∶= Γ̃. By construction, we have U = T̃ − e for e = {2p + 1,2q + 3}. Clearly e ∈ (�1,4n+1�odd
2 ).

To see that T ∈ T4n+3, observe that T = Inv(4n + 3, P̃Γ). Moreover, P̃Γ is an irreducible pairing of
∪P̃Γ = �0,4n+2�even because P is an irreducible pairing of �0,2p�even∪�2p+1,2q+1�odd∪�2q+2,4n�even
(see Notation 2.1). It follows from Theorem 2.1 that T ∈ T4n+3 and hence U ∈ T′4n+1.

Second suppose ∣ ∪P ∣ = 2n+ 1. By Lemma 5.1(2), P is an irreducible quasi-pairing of �0,4n�even. Let
us consider the pairing Π of �0,4n�even ∪ {v̂P + 1

2} obtained from the quasi-pairing P in the following
manner:

Π =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(P ∖ {{v̂P , v−P}}) ∪ {{v̂P + 1

2 , v
−
P}} if v−P < v̂P < v+P ,

(P ∖ {{v̂P , v+P}}) ∪ {{v̂P + 1
2 , v
+
P}} otherwise.

We then consider the tournament Γ = Inv(W,Π), where W ∶= �0,4n� ∪ {v̂P + 1
3 , v̂P + 1

2}. Now consider
the tournament T ∶= Γ̃. By construction, we have T = Inv(4n + 3, Π̃Γ), and U = T̃(x) for x = v̂P + 1 ∈
�1,4n + 1�odd (see Notations 2.1 and 2.2). By Theorem 2.1, to prove that T ∈ T4n+3 and hence U ∈ T′′4n+1,
it suffices to show that Π̃Γ is an irreducible pairing of �0,4n + 2�even, or, equivalently, that Π is an
irreducible pairing of ∪Π = �0,4n�even∪{v̂P+ 1

2} (see Notation 2.1). By construction, v̂P and v̂P+ 1
2 belong

respectively to two distinct blocks B and B′ of the pairing Π. Moreover, B ∪B′ = {v̂P , v̂P + 1
2 , v
−
P , v

+
P},

and the pairing {B,B′} of B ∪B′ is irreducible. Now let S be a nonempty and proper subset of Π. We
have to prove that ∪S is not an interval of ∪Π, which implies that Π is irreducible. We distinguish the
following three cases. First suppose S ∩{B,B′} = ∅. In this instance, S is a nonempty and proper subset
of P . Since the quasi-pairing P is irreducible, we obtain that ∪S is not an interval of ∪P , and hence it is
not an interval of ∪Π. Second suppose S ∩{B,B′} = {B} or {B′}. In this instance, ∪S is not an interval
of ∪Π because the pairing {B,B′} of B ∪ B′ is irreducible. Third suppose S ∩ {B,B′} = {B,B′},
i.e. {B,B′} ⊆ S. In this instance, (∪S) ∖ {v̂P + 1

2} is a union of blocks of Ppart (including the block
BP = {v̂P , v−P , v+P}). Moreover (∪S) ∖ {v̂P + 1

2} ⊊ ∪P . Therefore, (∪S) ∖ {v̂P + 1
2} is not an interval of

∪P because P is irreducible, and hence ∪S is not an interval of ∪Π.

Conversely, let U ∈ T′4n+1 ∪T′′4n+1. We have to prove that U ∈ T4n+1. To begin, suppose U ∈ T′4n+1. There

exist T ∈ T4n+3 and e ∈ (�1,4n+1�odd
2 ) such that U = T̃ − e (see Notation 2.2). Since ∣e∣ ≥ 5, so by Theo-

rem 2.1, the tournament U is indecomposable because T − e is indecomposable. Again by Theorem 2.1,
T = Inv(4n + 3, P ) for some pairing P of �0,4n + 2�even. Thus T − e = Inv(4n + 3 − e,P ), and hence
U = Inv(4n + 1, P̃T−e) (see Notation 2.1). Since ∣P̃T−e∣ = ∣P ∣ = n + 1, it follows that U ∈ T4n+1 (see
Remark 2.1).

Now suppose U ∈ T′′4n+1. There exist T ∈ T4n+3 and x ∈ �1,4n + 1�odd such that U = T̃(x) (see No-
tation 2.2). By Theorem 2.1, T = Inv(4n + 3, P ) for some irreducible pairing P of �0,4n + 2�even.
Moreover, T(x) = Inv(W,R), where W ∶= �0,4n + 2� ∖ {x, x + 1}, and where R is the quasi-pairing
of �0,4n + 2�even ∖ {x + 1} obtained from the pairing P as follows: R = (P ∖ {{x + 1, iP (x + 1)}}) ∪
{{x − 1, iP (x + 1)}} (see Notation 2.2). Thus U = Inv(4n + 1,Q), where Q = R̃T(x) (see Notation 2.1).
Clearly Q is a quasi-pairing of �0,4n�even (see Notation 2.1). Since ∣Q∣ = ∣P ∣ = n + 1, then by Re-
mark 2.1, to prove that U ∈ T4n+1, which completes the proof, it suffices to prove that the tournament
U is indecomposable. Since U = Inv(4n + 1,Q), so by Theorem 3.3, one only needs to show that the
partial quasi-pairing Q of 4n + 1 satisfies Conditions (C1)–(C4) of this theorem with m = 4n+1. Because
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∪Q = �0,4n�even, the quasi-pairing Q clearly satisfies Conditions (C2)–(C4). Now since �0,4n�even is a
transversal of mc(4n + 1) (see Fact 4.1(1)), to prove that Condition (C1) is satisfied, we only have to
show that the quasi-pairing Q of �0,4n�even is irreducible, or, equivalently, that the quasi-pairing R of
�0,4n + 2�even ∖ {x + 1} is irreducible (see Notation 2.1). So let S be a nonempty and proper subset of
Rpart. We have to prove that ∪S is not an interval of ∪R = �0,4n+2�even∖{x+1}. Note that v̂R = x−1 and
BR = {x− 1, iP (x− 1), iP (x+ 1)}. First suppose BR ∉ S. In this instance, S is a nonempty proper subset
of the pairing P . Since P is irreducible, it follows that ∪S is not an interval of ∪P = �0,4n + 2�even. If
x+1 ∉�min(∪S),max(∪S)�, then since ∪S is not an interval of ∪P , ∪S is not an interval of (∪P )∖{x+1}
either. If x+1 ∈�min(∪S),max(∪S)�, then since x−1 ∉ ∪S, we also have x−1 ∈�min(∪S),max(∪S)�
and hence ∪S is again not an interval of (∪P ) ∖ {x + 1}. Second suppose BR ∈ S. In this instance,
(∪S)∪{x+1} is a union of blocks of the pairing P . Moreover, (∪S)∪{x+1} ⊊ ∪P because (∪S) ⊊ ∪R.
Since P is irreducible, it follows that (∪S) ∪ {x + 1} is not an interval of ∪P . Since x − 1 ∈ ∪S and
{x− 1, x+ 1} is an interval of ∪P , it follows that ∪S is not an interval of ∪R. Therefore R is irreducible,
completing the proof.

6. Proof of Theorem 2.4

We first prove Lemma 2.1.

Proof of Lemma 2.1. We have to prove (2.2). Recall that (2.2) is well-defined (see Remark 2.3). Let
u ∈ �0,4n�even. Clearly T − u = Inv(4n + 1 − u,R), where

R =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
P ∖ {{u, iP (u)}} if u ≠ v̂P ,

P ∖ {{u, v−P},{u, v+P}} if u = v̂P .
(6.1)

Since ∣P ∣ = n + 1, it follows that ∣R∣ = n or n − 1. On the other hand, 4n + 1 − u ≅ 4n and hence
δ(4n + 1 − u) = δ(4n) = n + 1 (see (2.1)). Thus ∣R∣ < δ(4n + 1 − u), and hence T − u is decomposable.
Since u was arbitrarily chosen in �0,4n�even,

supp(T ) ⊆ �1,4n − 1�odd. (6.2)

Now let v ∈ �1,4n − 1�odd. Recall that the tournament T − v is indecomposable if and only if T̃ − v is.
Since T − v = Inv(4n + 1 − v,P ), we have T̃ − v = Inv(4n,Q), where Q = P̃T−v is a partial quasi-pairing
of 4n (see Notation 2.1). Recall that Q = {π(B) ∶ B ∈ P}, where π is the strictly increasing function
from �0,4n�∖{v} onto �0,4n−1�, and hence ∪Q = �0, v−1�even∪ �v,4n−1�odd. In the rest of the proof,
we use Theorem 3.3 to check the indecomposability of T̃ − v, and hence that of T − v. We therefore
consider Conditions (C1)–(C4) of this theorem with m = 4n. These conditions on Q are necessary
and sufficient for the tournament T̃ − v, and hence for T − v, to be indecomposable (see Theorem 3.3).
The quasi-pairing Q obviously satisfies Condition (C3) because ∪Q = �0, v − 1�even ∪ �v,4n − 1�odd.
Since T is indecomposable, then by Theorem 3.3, P is an irreducible quasi-pairing of the transversal
�0,4n�even of mc(4n + 1), which is also a transversal of mc(4n + 1−v) (see Fact 4.1(2)). Therefore, P is
an irreducible quasi-pairing of a transversal of mc(4n + 1−v), and hence Q is an irreducible quasi-pairing
of a transversal of mc(4n). So Q also satisfies Condition (C1). Thus,

Q satisfies Conditions (C1) and (C3) for every v ∈ �1,4n − 1�odd. (6.3)
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Let p and q denote min(BP ) and max(BP ), respectively. Since T − v is indecomposable if and only if
Q satisfies Conditions (C1)–(C4), then (2.2) follows directly from (6.2), (6.3), and the following three
claims.

Claim 2. If v ∈ �1,4n − 1�odd ∖ {p + 1, q − 1}, then Q satisfies Conditions (C2) and (C4).

Claim 3. If v = p + 1, then Q satisfies Conditions (C2) and (C4) if and only if p + 2 ∉ BP .

Claim 4. If v = q − 1, then Q satisfies Conditions (C2) and (C4) if and only if q − 2 ∉ BP .

By interchanging 4n + 1 and its dual (4n + 1)⋆, Claims 3 and 4 are equivalent. So to conclude the proof,
it only remains to prove Claims 2 and 3.

For Claim 2, suppose v ∈ �1,4n−1�odd ∖{p+1, q−1}. Suppose for a contradiction that Condition (C2)
is not satisfied, that is, v+Q = v−Q+1. Since ∪Q = �0, v−1�even∪�v,4n−1�odd, we get v−Q = v−1 and v+Q = v.
Since π(v−P ) = v−Q and π(v+P ) = v+Q, it follows that v−P = v − 1 and v+P = v + 1. Thus v = v−P + 1 = v+P − 1.
Since p = v−P or q = v+P because ∣BP ∣ = 3 and v−P ≤ v+P , this contradicts v ∉ {p + 1, q − 1}. Therefore
Condition (C2) is satisfied. Now suppose to the contrary that {v − 1, v + 1} ∈ P . If v̂P ∉ {v − 1, v + 1},
then the nontrivial interval {v − 1, v + 1} of �0,4n�even is a block of Ppart, which contradicts that the
quasi-pairing P of �0,4n�even is irreducible. Therefore v̂P ∈ {v −1, v +1}, and hence {v −1, v +1} ⊆ BP .
Since ∣BP ∣ = 3, it follows that p = v − 1 or q = v + 1, which contradicts that v ≠ p + 1 and v ≠ q − 1.
Therefore {v − 1, v + 1} ∉ P . Since π(v − 1) = v − 1 and π(v + 1) = v, this implies {v − 1, v} ∉ Q. Since
v − 1 and v are the unique consecutive elements of ∪Q = �0, v − 1�even ∪ �v,4n − 1�odd, it follows that
Condition (C4) is also satisfied.

For Claim 3, consider the quasi-pairing Q with v = p+1. Suppose p+2 ∈ BP . We will verify that Q does
not satisfy both Conditions (C2) and (C4). First suppose v̂P ∉ {p, p + 2}. In this instance, by the choice
of p, v−P = p and v+P = p + 2, and hence v−Q = p and v+Q = p + 1. So Condition (C2) is not satisfied. Second
suppose v̂P ∈ {p, p + 2}. Since {p, p + 2} ⊆ BP , it follows that {p, p + 2} ∈ P and hence {p, p + 1} ∈ Q.
Moreover, since v̂Q ∈ {p, p+1} because v̂P ∈ {p, p+2}, and since ∪Q = �0, p�even∪�p+1,4n−1�odd, then
{v̂Q − 1, v̂Q + 1} ⊈ ∪Q. Thus Condition (C4) is not satisfied. Conversely, suppose that Q does not satisfy
both Conditions (C2) and (C4). Since p and p + 1 are the unique consecutive elements in ∪Q, it follows
that v+Q = p+ 1 if Condition (C2) is not satisfied, and that {p, p+ 1} ∈ Q if Condition (C4) is not satisfied.
So v+Q = p + 1 or {p, p+ 1} ∈ Q. In the first instance, v+P = p+ 2 because π(v+P ) = v+Q and π(p+ 2) = p + 1,
and hence p + 2 ∈ BP . In the second one, {p, p + 2} ∈ P because π(p) = p and π(p + 2) = p + 1. Since
p ∈ BP , it follows that p + 2 ∈ BP .

We also need the following lemma.

Notation 6.1. Given an integer n with n ≥ 2, we denote by U4n the set of (indecomposable) tournaments
T̃ − x, where T ∈ T4n+1 and x ∈ supp(T ).

Lemma 6.1. For every integer n ≥ 2, we have U4n = T′4n ∪T′′4n.

Proof. Let U ∈ T′4n ∪ T′′4n. If U ∈ T′′4n, then U = T̃ − x for some T ∈ T′′4n+1 and x ∈ supp(T ) (see
Notation 2.3). Since T′′4n+1 ⊆ T4n+1 (see Theorem 2.3), we obtain U ∈ U4n. Now suppose U ∈ T′4n. In this

instance, U = T̃ − e for some T ∈ T4n+3 and e ∈ (�1,4n+1�odd
3 ) (see Notation 2.3). Note that ∣e∣ = 4n ≥ 8

because n ≥ 2. It follows from Theorem 2.1 that T −e is indecomposable, and hence U is indecomposable
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as well. Let x denote min(e) and let e′ ∶= e∖{x}. Consider the tournament T ′ ∶= T̃ − e′. By construction,
T ′ ∈ T′4n+1 and U = T̃ ′ − x. By Theorem 2.3, T ′ ∈ T4n+1. Since U and T ′ are indecomposable, it follows
that T ′ − x is also indecomposable, that is, x ∈ supp(T ′). Thus U ∈ U4n. So T′4n ∪T′′4n ⊆ U4n.

Conversely, let U ∈ U4n. By Theorem 2.3, U = T̃ − x for some T ∈ T′4n+1 ∪ T′′4n+1 and x ∈ supp(T ).

If T ∈ T′′4n+1, then U ∈ T′′4n (see Notation 2.3). Now suppose T ∈ T′4n+1. In this instance, T = ̃Γ − {i, j}
for some Γ ∈ T4n+3 and distinct i, j ∈ �1,4n + 1�odd. By construction, we have U = Γ̃ − e where e =
{i, j, k} for some k ∈ �0,4n + 2� ∖ {i, j}. (It suffices to take k = π−1

Γ−{i,j}
(x) (see Notation 2.1).) Recall

that Γ = Inv(4n + 3, P ) for some pairing P of �0,4n + 2�even (see Theorem 2.1), and hence Γ − e =
Inv(4n + 3− e,Q) for some Q ⊆ P . Clearly Q = P iff k is odd. Since Γ− e is indecomposable because U
is, ∣Q∣ ≥ δ(4n + 3−e). But δ(4n + 3−e) = δ(4n) = n+1 (see (2.1)) because 4n + 3−e ≅ 4n. Since Q ⊆ P

and ∣P ∣ = n+1, it follows that Q = P and hence k ∈ �1,4n+1�odd. Therefore U ∈ T′4n. This completes the
proof.

Proof of Theorem 2.4. Let n be an integer such that n ≥ 2. We have to prove that {T′4n,T′′4n} is a partition
of T4n. Clearly T′4n ≠ ∅ and T′′4n ≠ ∅. By the definitions of T′4n and T′′4n (see Notation 2.3), a tournament of
T′4n (resp. of T′′4n) is obtained from 4n by reversing a pairing (resp. a quasi-pairing). Therefore T′4n∩T′′4n =
∅. By Lemma 6.1, to prove that T4n = T′4n ∪T′′4n, we may prove instead that T4n = U4n.

Let U ∈ U4n. We have U = T̃ − x for some T ∈ T4n+1 and x ∈ supp(T ). Let P be the subset of (�0,4n�
2 )

such that T = Inv(4n + 1, P ). As T ∈ T4n+1, we have ∣P ∣ = n + 1 (see Remark 2.1). Because T − x is
indecomposable and T − x = Inv(4n + 1 − x,P ′) for some P ′ ⊆ P , we have δ(4n + 1 − x) ≤ ∣P ′∣ ≤ ∣P ∣.
Since δ(4n + 1 − x) = δ(4n) = n + 1 (see (2.1)) because 4n + 1 − x ≅ 4n, and since ∣P ∣ = n + 1, it
follows that P ′ = P . Since U = T̃ − x and T − x = Inv(4n + 1 − x,P ), we obtain U = Inv(4n, P̃T−x)
(see Notation 2.1). Because U is indecomposable and ∣P̃T−x∣ = ∣P ∣ = n + 1, it follows that U ∈ T4n (see
Remark 2.1).

Conversely, let U ∈ T4n. To prove that U ∈ U4n, we consider the subset Q of (V (4n)2 ) such that U =
Inv(4n,Q). We have ∣Q∣ = n+1 (see Remark 2.1) and ∣ ∪Q∣ ∈ {2n+1,2n+2} (see Fact 3.1(2)). Thus, Q
is a pairing or a quasi-pairing of ∪Q. Consider the Δ-decomposition D ∶= {{0},{4n−1}}∪{{2i−1,2i} ∶
1 ≤ i ≤ 2n − 1} of 4n (see Example 3.1). By Fact 3.1(1),

∪Q is a transversal of D. (6.4)

In particular, {0,4n − 1} ⊆ ∪Q. So consider the nonempty intersection X ∶= �1,4n − 1�odd ∩ (∪Q). Let p
denote min(X). If p = 1, then {0,1} ⊆ ∪Q. If p > 1, then since {p− 2, p− 1} ∈ D and p− 2 ∉ ∪Q because
p = min(X), it follows from (6.4) that {p − 1, p} ⊆ ∪Q. Thus in all cases

{p − 1, p} ⊆ ∪Q. (6.5)

Consider the tournament Γ obtained from U by adding one new vertex (p − 1
2) in the following manner:

Γ = Inv(W,Q), where W ∶= �0,4n−1�∪{p− 1
2}. Note that U = Γ−(p− 1

2). Now consider the tournament
T ∶= Γ̃. By construction, we have U = T̃ − p. Since U is indecomposable, so to prove that U ∈ U4n, it
remains only to prove that T ∈ T4n+1. Since Γ = Inv(W,Q) and W̃ = 4n + 1, we have T = Inv(4n + 1, Q̃Γ)
(see Notation 2.1). Since ∣Q̃Γ∣ = ∣Q∣ = n + 1, so by Remark 2.1, to prove that T ∈ T4n+1, we only have to
show that T is indecomposable, or, equivalently, that Γ is indecomposable.
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Since U = Inv(4n,Q) is indecomposable, and since Q is a pairing or a quasi-pairing of ∪Q, it follows
from Theorems 3.1 and 3.2 that Q is irreducible and that ∪Q is a transversal of mc(4n). Moreover,
because

mc(W ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

mc(4n) ∪ {{p − 1, p − 1
2},{p − 1

2 , p}} if p ∈ �3,4n − 3�odd,

mc(4n) ∪ {{1
2 ,1}} if p = 1,

mc(4n) ∪ {{4n − 2,4n − 3
2}} if p = 4n − 1,

and ∪Q is a transversal of mc(4n), it follows from (6.5) that ∪Q is also a transversal of mc(W ). Thus,
Q is an irreducible pairing or quasi-pairing of a transversal of mc(W ). If Q is a pairing, it follows
from Theorem 3.1, that the tournament Inv(W,Q), which is Γ, is indecomposable as desired. To finish,
suppose that Q is a quasi-pairing. By Theorem 3.2, at least one of the tournaments Γ, Γ− v−Q or Γ− v+Q is
indecomposable. To show that both Γ − v−Q and Γ − v+Q are decomposable, which implies that Γ is again
indecomposable, consider v ∈ {v−Q, v+Q}. As Γ = Inv(W,Q), we have Γ − v = Inv(W − v,P ) where
P = Q ∖ {{v, v̂Q}}. Since ∣P ∣ = ∣Q∣ − 1 = n, and since δ(W − v) = δ(4n) = n + 1 (see (2.1)) because
W − v ≅ 4n, we obtain ∣P ∣ < δ(W − v) and hence Γ − v is decomposable. Thus, both Γ − v−Q and Γ − v+Q
are decomposable. Therefore T is indecomposable.
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