
Advances in Pure and Applied Mathematics
2026, vol. 17, n° 1, 25-42 pages, DOI: 10.21494/ISTE.OP.2026.1392 ISTE OpenScience

Curvature estimates for a class of curvature equation in
warped product manifolds

Estimations de courbure pour une classe d’équations de courbure
dans les variétés à produits tordus

Jianbo Yang and Yueming Lu∗

College of Science, Harbin University of Science and Technology, 52 Xuefu Road, Harbin,
150080, Heilongjiang Province, China
2320800008@stu.hrbust.edu.cn, yueminglu@hrbust.edu.cn

ABSTRACT. In this paper, we establish curvature estimates for a class of curvature equation Fp(κ) = f(V, ν) for n
2 ≤ p ≤

n − 1 in the warped product manifolds M̄ . Additionally, by imposing some constraints on the right-hand side function, we
also obtain an existence result for the starshaped hypersurface Σ that satisfies the above equation.
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1. Introduction

Let M̄n+1 be a Riemannian manifold and Σ be a closed hypersurface in M̄n+1. We use X to denote its
position vector. We let ν(X) be the unit outer-normal vector of Σ at position vector X . The problem of
hypersurfaces with prescribed curvature asks to find a closed hypersurfaces Σ in M̄n+1 that satisfies the
following curvature equation

g(κ) = f,

where g is a smooth symmetric function of n variables, κ = (κ1, · · · , κn) are the principal curvatures of
Σ. The right hand side function f = f(X) or more generally f = f(X, ν(X)).

The above equation is overly broad for our study; therefore, we will impose certain constraints on it.
We consider the following prescribed curvature equation with the general right hand side

Fp(κ) =
∏

1≤i1<i2<···<ip≤n(κi1 + κi2 + · · ·+ κip) = f(X, ν(X)) , X ∈ Σ.

We introduce the following elliptic condition by Harvey and Lawson [15].

Definition 1.1. A C2 regular hypersurface Σ in M̄n+1 is called p-convex if κ(X) ∈ Pp for all X ∈ Σ,
where Pp is the p-convex cone

Pp = {κ ∈ R
n : ∀1 ≤ i1 < i2 < · · · < ip ≤ n, κi1 + κi2 + · · ·+ κip > 0}.

When the ambient space is a general Riemannian manifold, difficult-to-handle curvature terms will
arise in the prior estimates. Therefore, we consider the warped product manifold with rotational

∗Corresponding author.

© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 25



symmetry properties. Let (M, g′) be a compact Riemannian manifold and I be an open interval in R.
We consider the warped product manifold M̄n+1 = I ×φ M endowed with the metric

ḡ = dρ2 + φ2(ρ)g′

where φ : I → R
+ is a smooth positive function. A hypersurface Σ in M̄n+1 is called star-shaped if Σ is

the graph of a function ρ = ρ(z), z ∈ M , i.e.,

Σ = {X = (z, ρ(z)) ∈ M̄n+1 : z ∈ M}
We also call ρ is p-convex if the star-shaped hypersurface Σ(z, ρ(z)) is p-convex.

Therefore, based on the above discussion, in this paper, we consider the following prescribed curvature
problem

Fp(κ) =
∏

1≤i1<i2<···<ip≤n(κi1 + κi2 + · · ·+ κip) = f(X, ν(X)) , X ∈ Σ (1.1)

where Σ is a closed star-shaped p-convex hypersurface in the warped product manifold, V (X) is the
vector field V = φ(ρ) ∂

∂ρ
at X ∈ Σ. The prescript function f is positive and C2 on Γ, where Γ is an

open neighborhood of {(V (X), ν(X)) : X ∈ Σ} in TM̄n+1 × S
n. Equation (1.1) is an elliptic partial

differential equation of second order of the function ρ due to the p-convexity of Σ.

Let’s make a brief review of the current research status of equation (1.1). The equation (1.1) is fully
nonlinear for p ≤ n − 1. When p = 1, equation (1.1) is the Gaussian curvature equation studied by
Oliker [20] in R

n+1. When p = n, it is the mean curvature equation studied by Bakelman-Kantor [1] and
Treibergs-Wei [21] in R

n+1. In [7], Chu-Jiao considered the (η, k)-convex star-shaped hypersurfaces in
R

n+1, where 1 ≤ k ≤ n, ηi =
∑

j �=i κj . The (η, n) curvature equation there is exactly the equation (1.1)
with p = n − 1. When n

2 ≤ p ≤ n − 1, equation (1.1) was firstly proposed by Dong [9] in R
n+1 and

he obtained the existence theorem by establishing C0, C1 and C2 estimates of equation (1.1). In space
forms, Barbosa-Lira-Oliker in [2] studied the curvature estimates for hypersurfaces with prescribed m-th
curvature, i.e., σm(κ) = f , where the right hand side function f does not depend on ν(X). Spruck-Xiao
in [3] studied the curvature estimates for hypersurfaces with prescribed scalar curvature for general f
depending on ν(X). For equation (1.1), Zhou in [6] studied the curvature estimates for (n − 1)-convex
hypersurfaces. Recently, Lu-Zhong [19] extended the results of Dong to space forms. To obtain the
curvature estimates, Lu-Zhong applied another concavity inequality of curvature function Fp to absorb
the bad third order terms in the elliptic space and hyperbolic space. Compared with Dong and Lu-Zhong’s
work, the important Codazzi property in curvature estimate and gradient estimate for equation (1.1) can’t
be used here due to the non-constant sectional curvature in the warped product manifold.

For the warped product manifolds, Chen-Li-Wang in [31] derived the curvature estimates for 2-convex
and (n − 1)-convex hypersurfaces, that is, the curvature estimates for hypersurfaces satisfying the cur-
vature equation σ2(κ) = f and σn−1(κ) = f , where the right hand side function f depends on ν(X).
Chen-Tu-Xiang in [32] studied the curvature equation

σk
σl

(η) = f(V, ν)

for (η, k)-convex star-shaped hypersurfaces where 1 ≤ k ≤ n, ηi =
∑

j �=i κi and σk is the k-th elemen-
tary symmetric function with 2 ≤ k ≤ n, 0 ≤ l ≤ k − 2. Recently, Wang in [33] extended the results of
Chen-Tu-Xiang to 0 ≤ l < k < n by extending the key inequality due to Chen-Dong-Han [25].
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If the right hand side function f depending on the gradient term or the normal for Hessian equation
or curvature equation, let’s give a brief review of the results obtained recently. Guan-Ren-Wang [34]
showed that curvature estimate fails for curvature quotient equation

σk
σl

(κ(X)) = f(V (X), ν(X)), ∀X ∈ M,

in the Euclidean space for general f , where 0 < l < k ≤ n. However, in the case l = 0 and k ≥ 3,
the curvature estimate for convex hypersurfaces was obtained by Caffarelli-Nirenberg-Spruck [24] when
k = n, Guan-Ren-Wang [34] when 3 ≤ k ≤ n, and for non-convex hypersurfaces by Ren-Wang [27, 28]
when k = n − 1 and n − 2. Recently, Lu-Tsai in [18] gave a simpler proof of Ren-Wang’s results [27].
Assuming that f is convex with respect to the normal ν, Guan [26] obtained the global C2 estimates
for the Dirichlet problem of general Hessian equation on Riemannian manifolds. For the other technical
assumptions on f to derive C2 estimates, we refer the readers to Ivochkina [22, 23], Guan-Guan [11],
Guan-Lin-Ma [14], Guan-Li-Li [13] and Guan-Jiao [12] for more details.

In this paper, the curvature estimate for equation (1.1) is established without any technical assumptions
on prescript function f in the warped product manifold.

Theorem 1.2. Let Σ be a closed star-shaped p-convex hypersurface satisfying curvature equation (1.1)
in the warped product manifold with n

2
≤ p ≤ n− 1. Then,

max
X∈M,i=1,··· ,n

|κi(X)| ≤ C, (1.2)

where C is a positive constant depending on n, p, |Σ|C1 , inf f and |f |C2 .

Unlike curvature estimates, both gradient estimates and boundedness estimates require some restric-
tions on the prescript function f . For the gradient estimate and boundedness estimate, we respectively
adopt two assumptions A1 and A2 on prescript function f from [1, 21] as follows:

(A1): for any fixed unit vector ν,

∂

∂ρ

(
φCp

n(ρ)f(V, ν)
)
≤ 0, where |V | = φ(ρ);

(A2): there exist two positive constants r1 and r2 such that r1 < r2 and

f

(
V,

V

|V |
)

≥ pC
p
n

(
φ′

φ

)Cp
n

(ρ), for ρ = r1, (1.3)

f

(
V,

V

|V |
)

≤ pC
p
n

(
φ′

φ

)Cp
n

(ρ), for ρ = r2. (1.4)

Based on the curvature estimate (C2 estimate), gradient estimate (C1 estimate) and boundedness esti-
mate (C0 estimate), we can prove the existence theorem by the continuity method. Denote by

π : TM̄n+1 → M̄n+1, Xp �→ p,∀Xp ∈ TpM̄
n+1

the natural projection and ball Br = {(z, ρ) ∈ M̄n+1 : ρ ≤ r}.
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Theorem 1.3. Let f ∈ C2
(
π−1(Br2 \Br1)× S

n
)

be a positive function satisfying assumptions A1 and
A2. Then there exists a unique C3,α closed star-shaped p-convex hypersurface Σ(z, ρ(z)) satisfying equa-
tion (1.1) such that r1 ≤ ρ(z) ≤ r2 on S

n for any α ∈ (0, 1) provided n
2 ≤ p ≤ n− 1.

The organization of this paper is as follows. In Section 2, we recall some geometric formulas regarding
the warped product manifold and some properties of curvature function Fp in p-convex cone. In Section
3, we prove the curvature estimate Theorem 1.2. Section 4 is devoted to the gradient estimate. In the last
section, we establish boundedness estimate and obtain the existence theorem by the continuity method.

2. Preliminaries

In this section, we recall some geometric formulas in warped product space(see [30, 31]). Let M
be a compact Riemannian manifold with the metric g′ and I be an open interval in R. The manifold
M̄n+1 = I ×φ M is called warped product if it is endowed with the metric

ḡ = dρ2 + φ2(ρ)g′ (2.1)

where φ : I → R
+ is a smooth positive function and φ′ > 0.

In this paper, ‘〈·, ·〉’ is the inner product defined by the metric ḡ in the ambient space, |·| is the norm
with respect to ḡ and ∇̄ denotes the Levi-Civita connection with respect to the metric ḡ. Let ∇′ is the
Levi-Civita connection with respect to the metric g′. The curvature tensors in M and M̄ are denoted by
R and R̄.

Let {e1, · · · , en} be an orthonormal frame field in M and let {θ1, · · · , θn} be the associated dual
frame. An orthonormal frame in M̄ may be defined by Ēi =

1
φ
ei, 1 ≤ i ≤ n and Ēn+1 = ∂

∂ρ
. Let g

be the restriction of ḡ on hypersurface Σ and ∇ the Levi-Civita connection with respect to g. Suppose
{E1, · · · , En} is a local frame on Σ, we denote ∇i = ∇Ei.

A star-shaped compact hypersurface Σ in M̄ can be represented as a smooth radial graph

Σ = {(z, ρ(z)) : z ∈ M},
where ρ : M → I be a smooth function. A tangent vector of Σ in M̄ is

Xi = φĒi + ρiĒn+1, (2.2)

where ρi are the components of the differential dρ = ρiθ
i. The outward unit normal is given by

ν =
1√

φ2 + |∇′ρ|2
(
φĒn+1 −

∑
ρiĒi

)
. (2.3)

where |∇′ρ|2 = ρiρi is the squared norm of ∇′ρ =
∑

ρiei. The components of the induced metric and
its inverse in Σ is given by

gij = 〈Xi, Xj〉 = φ2δij + ρiρj, g
ij =

1

φ2

(
δij − ρiρj

φ2 + |∇′ρ|2
)
. (2.4)

The second fundamental form of Σ with components (hij) is determined by

hij =
1√

φ2 + |∇′ρ|2
(−φρij + 2φ′ρiρj + φ2φ′δij

)
, (2.5)
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where ρij are the components of the Hessian ∇′2z of z in M . The Codazzi equation is given by

∇khij = ∇jhik + R̄νijk (2.6)

Lemma 2.1. [4] On the leaf Mρ, the curvature satisfies

R̄ijkν = 0

and the principle curvature is given by

κ(ρ) =
φ′(ρ)
φ(ρ)

where the upward unit normal En+1 =
∂
∂ρ is choosen for each leaf Mρ.

Lemma 2.2. [4] Let X0 be a point of Σ and {E1, · · · , En, En+1 = ν} be an adapted frame field such
that Ei is a principal direction and connection forms ωk

i = 0 at X0. Let hij be the second fundamental
form of Σ. Then at X0, we have that

∇iihll =∇llhii −
∑

hlm(hmihil − hmlhii)−
∑

hmi(hmihll − hmlhli)

+∇lR̄νiil − 2
∑

hmlR̄miil + hilR̄νiνl + hllR̄νliν +∇iR̄νlik

− 2
∑

hmiR̄mlil + hiiR̄νlνl + hliR̄νliν (2.7)

The position vector V = φ(ρ) ∂
∂ρ is a conformal Killing vector field and the support function on Σ is

given by u = 〈V, ν〉. We define

Φ(ρ) =

ρ∫
0

φ(r)dr.

Let A be a symmetric n× n matrix, we denote κ(A) = (κ1(A), κ2(A), · · · , κn(A)) where κi(A) (i =
1, 2, · · · , n) is the eigenvalue of A. The p-convex cone of symmetric n× n matrices is defined by Pp =

{A : κ(A) ∈ Pp}. Therefore, the hypersurface Σ in M̄n+1 is p-convex if and only if
√

g−1{hij}
√

g−1 ∈
Pp.

Denote by

F(κ) = Fp(κ)
1

C
p
n =

[∏
1≤i1<i2<···<ip≤n(κi1 + κi2 + · · ·+ κip)

] 1

C
p
n

and

F (A) = F(κ(A)), F ij(A) =
∂F

∂Aij
(A), F ij,kl(A) =

∂2F

∂Aij∂Akl
(A).

Then equation (1.1) can be rewritten as

F (b) = f̃(V, ν), (2.8)

where b =
√

g−1{hij}
√

g−1, f̃ = f
1

C
p
n and Cp

n = n!
p!(n−p)! . Since {F ij} is positive on p-convex cone,

equation (2.8) is elliptic for p-convex hypersurface Σ. Moreover, on the p-convex cone, F is concave,
{F ij,kl(b)} is negative, which is extremely important in the curvature estimate.
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If A = diag(κ1, κ2, · · · , κn), then {F ij(A)} is diagonal and

F ii(A) =
∂F
∂κi

(κ(A)) =
1

Cp
n
F(κ)

∑
i∈{i1,i2,··· ,ip}

1≤i1<i2<···<ip≤n

1

κi1 + κi2 + · · ·+ κip

. (2.9)

The following properties of function F are proved by Dinew [8].

Lemma 2.3. Let κ = (κ1, κ2, · · · , κn) ∈ Pp with κ1 ≥ κ2 ≥ · · · ≥ κn. Then,
(1) ∂F

∂κ1
(κ)κ1 ≥ 1

n
F(κ); (2)

∑
∂F
∂κi

(κ) ≥ p; (3)
∑

∂F
∂κi

κi = F(κ); (4)there exists a positive constant
C=C(n,p) such that ∂F

∂κj
(κ) ≥ C

∑
∂F
∂κi

(κ) when j ≥ n− p+ 1.

3. Curvature estimate

Let κmax be the largest principal curvature of Σ. Based on the assumption of C0 and C1 estimates, we
assert that

1

C
≤ inf

Σ
u ≤ u ≤ sup

Σ
u ≤ C,

where C depends on infΣ ρ and |ρ|C1. In the following, we will denote by C a constant depending only
on n, p, |ρ|, inf f , |f |C2 or some of them. It may change from line to line.

Then we choose a = 1
2 infΣ u > 0 and consider the quantity

Q = ln κmax − ln(u− a) +NΦ,

where N is a large constant to be determined later.

Suppose Q attains its maximum at some point X0 ∈ Σ. Choose an orthonormal frame E1, · · · , En near
X0 such that at X0, we have

hij = κiδij, κ1 ≥ κ2 ≥ · · · ≥ κn.

If κmax has multiplicity more than 1, then Q is not smooth at X0. We consider the new test function Q̂

near X0

Q̂ = ln h11 − ln(u− a) +NΦ. (3.1)

Clearly, Q̂ also attains its maximum at X0.

At X0, we have

0 =
∇ih11

h11
− ∇iu

u− a
+N∇iΦ, (3.2)

0 ≥ ∇iih11

h11
−
(∇ih11

h11

)2

− ∇iiu

u− a
+

( ∇iu

u− a

)2

+N∇iiΦ. (3.3)

By Lemma 2.2, we have

∇iih11 =∇11hii + h2
11hii − h11h

2
ii + 2(h11 − hii)R̄i1i1

− h11R̄iνiν + hiiR̄1ν1ν −∇1R̄i1iν +∇iR̄1i1ν.
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By (2.2) and Gram-Schmidt procedure, we can obtain the orthonormal frame E1,· · · , En, En+1 = ν

from the local frame X1, · · ·Xn, ν. This implies the bound of the components of R̄ and ∇̄R̄ due to the
frame X1, · · · , Xn, ν depends only on ρ and ∇′ρ.

Hence, we have

0 ≥∇11hii

h11
−
(∇ih11

h11

)2

− ∇iiu

u− a
+

( ∇iu

u− a

)2

+N∇iiΦ

+ h11hii − h2
ii − C. (3.4)

Contracting (3.4) with F ii, we have

0 ≥
∑
i

F ii∇11hii

h11
−
∑
i

F ii (∇ih11)
2

h2
11

−
∑
i

F ii ∇iiu

u− a
+
∑
i

F ii (∇iu)
2

(u− a)2

+N
∑
i

F ii∇iiΦ−
∑
i

F iih2
ii − C

∑
i

F ii. (3.5)

we have used the fact
∑

i F
iihii = f̃ in the above inequality.

Differentiating the equation F (b) = f̃(V, ν), we have

∑
i

F ii∇khii = ∇kf̃(V, ν) = f̃V (∇kV ) +
∑
s

hksf̃ν(Es), (3.6)

and

∑
i

F ii∇11hii+
∑
p,q,r,s

F pq,rs∇1hpq∇1hrs

= f̃V V (∇1V,∇1V ) + 2f̃V ν(∇1V,∇1ν) + f̃νν(∇1ν,∇1ν)

+ f̃ν(∇11ν) + f̃V (∇11V ),

(3.7)

where ∇ij = ∇i∇j −∇∇iEj .

Let Y be a smooth vector field in M̄ , then Y =
∑

i aiei + b ∂
∂ρ where ai, b are smooth function on M̄ .

Without loss of generality, we may assume ei =
∂
∂zi , i = 1, . . . , n, is a natural frame on M . Denote by

ḡij = ḡ( ∂
∂zi ,

∂
∂zj ), ḡiρ = ḡ( ∂

∂zi ,
∂
∂ρ) and ḡρρ = ḡ( ∂

∂ρ ,
∂
∂ρ). By the definition of Christoffel symbol, we have

Γk
iρ =

1

2
ḡkl
(
∂ḡρl
∂zi

+
∂ḡil
∂ρ

− ∂ḡiρ
∂zl

)
+

1

2
ḡkρ
(
∂ḡρρ
∂zi

+
∂ḡiρ
∂ρ

− ∂ḡiρ
∂ρ

)

=
1

2

1

φ2
g′kl(0 + 2φφ′g′il − 0) + 0

=
φ′

φ
δik.
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Similarly, we also have Γρ
iρ = 0. By direct calculation, we have

∇Y V = ∇∑
i aiei+b ∂

∂ρ
V =

∑
i

ai∇iV + b∇ ∂
∂ρ
V

=
∑
i

aiφ(ρ)∇i
∂

∂ρ
+ bφ′(ρ)

∂

∂ρ

=
∑
i,k

aiφ(ρ)
(
Γk
iρek
)
+ bφ′(ρ)

∂

∂ρ

= φ′(ρ)Y.

(3.8)

Then, we have

∇1V = φ′(ρ)E1, (3.9)

and

∇11V = ∇1∇1V −∇∇1E1V

= ∇1(φ
′(ρ)E1)− φ′(ρ)∇1E1

= φ′′(ρ)E1(ρ)E1 + φ′(ρ)(∇1E1 − h11ν)− φ′(ρ)∇1E1

= φ′′E1(ρ)E1 − h11φ
′(ρ)ν.

(3.10)

By equation (2.6), we have

∇ijν = ∇i∇jν −∇∇iEj
ν = ∇i

(∑
k

hjkEk

)
−
∑
k

h(∇iEj, Ek)Ek

=
∑
k

[∇i(hjk)Ek + hjk∇iEk − h(∇iEj , Ek)Ek

]
=
∑
k

[(∇ihjk + h(∇iEj , Ek) + h(Ej ,∇iEk))Ek]

+
∑
k

[
hjk∇iEk − h(∇iEj, Ek)Ek

]
=
∑
k

(∇khijEk − R̄νjikEk − hkihkjν
)
.

At X0, it is

∇11ν =
∑
k

(∇kh11 − R̄ν11k

)
Ek − h2

11ν. (3.11)

By critical equation (3.2), we have

|∇kh11| = |h11∇iu

u− a
−Nh11∇iΦ|

= | h11

u− a

∑
i

hii〈V,Ei〉 −Nh11〈V,Ei〉|

≤ C(h2
11 +Nh11).

(3.12)
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Hence

|∇11ν| ≤ C(h2
11 +Nh11). (3.13)

Inserting equations (3.9), (3.10), (3.13) and Weingarten formula ∇1ν =
∑

l h1lEl into equation (3.7), we
have

∑
i

F ii∇11hii +
∑
p,q,r,s

F pq,rs∇1hpq∇1hrs ≥ −C(1 + h2
11 +Nh11) (3.14)

where C depends on |ρ|C1 and |f |C2 .

Plugging (3.14) into equation (3.5), we have

0 ≥ −C(h11 +N)− 1

h11

∑
p,q,r,s

F pq.rs∇1hpq∇1hrs −
∑
i

F ii (∇ih11)
2

h2
11

−
∑
i

F ii ∇iiu

u− a
+
∑
i

F ii (∇iu)
2

(u− a)2
+N

∑
i

F ii∇iiΦ

−
∑
i

F iih2
ii − C

∑
i

F ii.

(3.15)

Recalling that ∇iΦ = 〈V,Ei〉, by direct calculation, we have

∇ijΦ = ∇i∇jΦ−∇∇iEjΦ

= ∇i〈V,Ej〉 − ∇∇iEjΦ

= 〈∇iV,Ej〉+ 〈V,∇iEj〉 − ∇∇iEjΦ

= φ′(ρ)δij − uhij.

(3.16)

At X0, F iihii = f̃ imply that

N
∑
i

F ii∇iiΦ = Nφ′∑
i

F ii −Nu
∑
i

F iihii ≥ Nφ′∑
i

F ii − CN. (3.17)

By Weingarten formula ∇iν =
∑

l hilEl, we have

∇iju = ∇i∇ju−∇∇iEju

= ∇i

(∑
l

hjl∇lΦ

)
−
∑
l

h(∇iEj , El)∇lΦ

=
∑
l

(∇ihjl∇lΦ+ h(∇iEj, El)∇lΦ+ hjl∇ilΦ− h(∇iEj, El)∇lΦ)

=
∑
l

[∇ihjl∇lΦ+ hjl (φ
′(ρ)δil − uhil)]

=
∑
k

(∇khij + R̄νjki

)∇kΦ + φ′(ρ)hij −
∑
k

uhikhjk.

(3.18)
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At X0, we have

∑
i

F ii∇iiu

u− a
=

1

u− a

(∑
k

F ii∇khii∇kΦ+ φ′F iihii − u
∑
i

F iih2
ii +

∑
k

F iiR̄νiki∇kΦ

)

=
1

u− a

(∑
k

f̃V (∇kV )∇kΦ+
∑
k

hkkf̃ν(Ek) + φ′f̃ − u
∑
i

F iih2
ii

)

+
1

u− a

∑
k

F iiR̄νiki∇kΦ

≤ Ch11 + C
∑
i

F ii − u

u− a

∑
i

F iih2
ii.

(3.19)

Inserting (3.17) and (3.19) into (3.15) yields

0 ≥ −C(h11 +N)− 1

h11

∑
p,q,r,s

F pq,rs∇1hpq∇1hrs +
a

u− a

∑
i

F iih2
ii

+ (Nφ′ − C)
∑
i

F ii −
∑
i

F ii(∇ih11)
2

h2
11

+
∑
i

F ii(∇iu)
2

(u− a)2
.

(3.20)

Now we split the proof into two case as Chou-Wang [16] and Hou-Ma-Wu [29] to eliminate the negative
third order terms.

Case A. hnn ≤ −h11

n
. Thanks to the concavity of F , we can drop the positive term

− 1
h11

∑
p,q,r,sF

pq,rs∇1hpq∇1hrs in (3.20). Using critical equation (3.2), we have

∑
i

F ii(∇ih11)
2

h2
11

≤ (1 + ε)
∑
i

F ii(∇iu)
2

(u− a)2
+ (1 +

1

ε
)N2

∑
i

F ii(∇iΦ)
2

≤
∑
i

F ii(∇iu)
2

(u− a)2
+ ε

∑
i F

iihii(∇iΦ)
2

(u− a)2
+

1 + ε

ε
N2
∑
i

F ii(∇iΦ)
2

(3.21)

for any ε > 0. Inserting (3.21) into (3.20) and choose ε sufficiently small yields

0 ≥ −C(h11 +N) + (Nφ′ − C − CN2)
∑
i

F ii +
a

u− a

∑
i

F iih2
ii. (3.22)

Since F 11 ≤ F 22 ≤ · · · ≤ F nn and hnn ≤ −h11

n , we get

∑
i

F iih2
ii > F nnh2

nn ≥ 1

n3
h2
11

∑
i

F ii. (3.23)

Hence,

0 ≥ −C(h11 +N) + (Nφ′ − C − CN2 + Ch2
11)
∑
i

F ii. (3.24)

Since
∑

i F
ii ≥ p, inequality (3.23) implies h11 ≤ CN at X0.

Case B. hnn > −h11

n . Let

I = {i|F ii ≤ n2F 11}.
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By (3.21), we have

∑
i∈I

F ii(∇ih11)
2

h2
11

≤
∑
i

F ii(∇iu)
2

(u− a)2
+ ε

∑
i F

iihii(∇iΦ)
2

(u− a)2
+

1 + ε

ε
N2
∑
i

F ii(∇iΦ)
2

≤
∑
i

F ii(∇iu)
2

(u− a)2
+ ε

∑
i F

iihii(∇iΦ)
2

(u− a)2
+ C

1 + ε

ε
N2F 11.

(3.25)

Inserting (3.25) into (3.20) and choosing ε sufficiently small yield

0 ≥ −C(h11 +N)− 1

h11

∑
p,q,r,s

F pq,rs∇1hpq∇1hrs + C
∑
i

F iih2
ii

+ (Nφ′ − C)
∑
i

F ii −
∑
i/∈I

F ii(∇ih11)
2

h2
11

− CN2F 11.

(3.26)

By Lemma 1.1 in Gerhardt [5] and the concavity of F , we have

−
∑
p,q,r,s

F pq,rs∇1hpq∇1hrs = −
∑
p �=q

∂2F

∂hpp∂hqq
∇1hpp∇1hqq +

∑
p �=q

F pp,qq(∇1hpq)
2

= −
∑
p �=q

∂2F

∂hpp∂hqq
∇1hpp∇1hqq −

∑
p �=q

F pp − F qq

hpp − hqq
(∇1hpq)

2

≥
∑
p �=q

F pp − F qq

hqq − hpp
(∇1hpq)

2.

(3.27)

Plugging into (3.26), we have

0 ≥ −C(h11 +N) +
1

h11

∑
p �=q

F pp − F qq

hqq − hpp
(∇1hpq)

2 + C
∑
i

F iih2
ii

+ (Nφ′ − C)
∑
i

F ii −
∑
i/∈I

F ii(∇ih11)
2

h2
11

− CN2F 11.

(3.28)

Now∑
p �=q

F pp − F qq

hqq − hpp
(∇1hpq)

2 ≥ 2
∑
p/∈I

F 11 − F pp

hpp − h11
(∇1h1p)

2 ≥ 2
(n− 1)

nh11

∑
i/∈I

F ii(∇1h1i)
2. (3.29)

By Codazzi equation (2.6) and inequality (a+ b)2 ≥ n
2(n−1)a

2 − n
n−2b

2, we have

∑
i/∈I

F ii(∇1h1i)
2 =

∑
i/∈I

F ii(∇ih11 + R̄ν1i1)
2 ≥

∑
i/∈I

F ii(∇ih11)
2 − C

∑
i/∈I

F ii. (3.30)

Combining (3.28), (3.29) and (3.30) gives

0 ≥ −C(h11 +N) + C
∑
i

F iih2
ii + (Nφ′ − C)

∑
i

F ii − CN2F 11

≥ −C(h11 +N) + (Nφ′ − C)
∑
i

F ii + CF 11(h2
11 − CN2).

(3.31)
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Denote A =
∑n

i=n−p+1 hii. By equation (2.9), we have

F nn =
1

Cp
n
F(λ)

∑
n∈{i1,i2,··· ,ip}

1≤i1<i2<···<ip≤n

1

λi1 + λi2 + · · ·+ λip

≥ 1

Cp
n

F (b)

A
=

1

Cp
n

f̃

A
≥ C

A
, (3.32)

and

F nn ≥ 1

Cp
n

F (b)

A
=

1

Cp
nF (b)C

p
n−1A

F (b)C
p
n

=
1

Cp
nf̃Cp

n−1A

∏
2≤i1<i2<···<ip−1≤n(h11 +

p−1∑
k=1

hikik)×
∏

2≤i1<i2<···<ip≤n(

p∑
k=1

hikik)

≥ C

(
n− p+ 1

n
h11

)Cp−1
n−1

× ACp
n−1−1, (3.33)

when n
2 ≤ p ≤ n− 1. Hence∑
i

F ii ≥ F nn ≥ Ch11. (3.34)

Plugging (3.34) into (3.31), we have

0 ≥ (Nφ′ − C)h11 − CN + CF 11(h2
11 − CN2). (3.35)

If we choose N sufficiently large and assume that h11 > CN , then

0 ≥ CN2φ′ − CN ≥ CN2 − CN.

This leads to a contradiction when we take sufficiently large N . Hence h11 < CN at X0.

4. Gradient estimate

In this section, we establish the C1 estimate for equation (1.1) by the method of Guan-Lin-Ma in [14].

Theorem 4.1. Let M be a closed star-shaped hypersurface in M̄ satisfying equation (1.1) and assumption
(A1) hold. If ρ has positive upper and lower bounds, then there is a constant C = C(infM ρ, supM ρ),
such that |∇′ρ| ≤ C .

Proof. Since

u =
φ2(ρ)√

φ2(ρ) + |∇′ρ|2 ,

it suffices to obtain a positive lower bound of u on Σ. We consider the quantity

H = − log u+ γ(Φ(ρ)),

where γ is a single-variable function to be determined later. Suppose that the maximum of H is achieved
at X0 ∈ Σ, where X0 = X(z0), z0 ∈ M .
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Let θ be the angle between V (X0) and ν(X0). By equation (2.3), 〈V (X), ν(X)〉 = φ√
1+ |∇′ρ|2

φ2

> 0.

Hence, θ ∈ (0, π2 ]. Now we split the proof into two cases.

Case A. θ ∈ (0, θ0] for some θ0 ∈ (0, π2 ). In this case,

H(X) ≤ H(X0) = − log u(X0) + γ(Φ(ρ(z0))) ≤ − log(|V (X0)| cos θ0) + γ(ρ(z0)), ∀X ∈ Σ,

which implies a uniform lower bound of u on Σ.

Case B. θ ∈ [θ0,
π
2 ]. We can choose a local orthonormal frame {E1, E2, · · · , En} on Σ around X0 such

that 〈V,E1〉 �= 0, and 〈V,Ei〉 = 0, i ≥ 2. Differentiating H twice at X0 yields

0 = −∇iu

u
+ γ′∇iΦ, (4.1)

and

0 ≥ ∇iiH = −∇iiu

u
+

(∇iu

u

)2

+ γ′∇iiΦ + γ′′(∇iΦ)
2. (4.2)

By critical equation (4.1), we have

uγ′∇1Φ = ∇1u =
∑
k

h1k∇1Φ = h11〈V,E1〉.

At X0, we have h11 = uγ′. For i ≥ 2, we get

uγ′∇iΦ = ∇iu =
∑
k

hik∇kΦ = hi1〈V,E1〉.

By ∇iΦ = 〈V,Ei〉 = 0, i ≥ 2, we have h1i = 0, i ≥ 2 at X0. Hence we can rotate {E2, E3, · · · , En} so
that {hij} is diagonal at X0 and hence,

{F ij(b)} = diag(F1(κ),F2(κ), · · · ,Fn(κ)).

By equation (4.1), (3.16) and (3.18), (4.2) implies that

0 ≥ −1

u

(∇1hii∇1Φ + φ′hii − uh2
ii + R̄νi1i∇1Φ

)
+ [(γ′)2 + γ′′](δi1∇1Φ)

2

+ γ′(φ′gii − uhii).
(4.3)

Contracting (4.3) with F ii, we have

0 ≥ −1

u

(
F ii∇1hii∇1Φ+ φ′F iihii − u

∑
F iih2

ii +
∑

F iiR̄νi1i∇1Φ
)

+ [(γ′)2 + γ′′]F 11(∇1Φ)
2 + γ′

(
φ′∑F ii − u

∑
F iihii

)
. (4.4)

Differentiating equation F (b) = f̃ at X0 yields

F ii∇1hii = f̃V (∇1V ) + h11f̃ν(E1). (4.5)
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Inserting (4.5) and F iihii = f̃ into (4.4) yields

0 ≥− 1

u

(
〈V, e1〉f̃V (∇1V ) + φ′f̃

)
− γ′〈V,E1〉f̃ν(E1) +

∑
F iih2

ii

− 1

u

∑
F iiR̄νi1i∇1Φ + [(γ′)2 + γ′′]F 11〈V,E1〉2 + γ′φ′∑F ii − γ′uf̃ . (4.6)

Assumption (A1) is equivalent to

φ′f̃ + f̃V (∇V V ) ≤ 0. (4.7)

Since at X0, V = 〈V,E1〉E1 + 〈V, ν〉ν, we have

f̃V (∇V V ) = 〈V,E1〉f̃V (∇1V ) + uf̃V (∇νV ). (4.8)

It follows from (3.8) that

uf̃V (∇νV ) = uφ′f̃V (ν). (4.9)

Combing (4.6)-(4.9), we obtain

0 ≥ φ′f̃V (ν)− γ′〈V,E1〉f̃ν(E1) +
∑

F iih2
ii + [(γ′)2 + γ′′]F 11〈V,E1〉2

+ γ′φ′∑F ii − γ′uf̃ − 1

u

∑
F iiR̄νi1i∇1Φ. (4.10)

Now we choose

γ(t) =
α

t
, (4.11)

where α is sufficiently large. Recalling that h11 = uγ′, we have h11 < 0. Since {hij} ∈ Pp, h11 is in the
p smallest ones of {h11, h22, · · · , hnn}. By Lemma 2.3, we have

F 11 ≥ θ
∑

F ii ≥ pθ. (4.12)

Therefore, by (4.10) and (4.11), we have

0 ≥ F 11h2
11 +

(
α2

t4
+

2α

t3

)
F 11〈V,E1〉2 − α

t2
φ′∑F ii − 1

u

∑
F iiR̄νi1i∇1Φ

+
α

t2
〈V,E1〉f̃ν(E1) +

α

t2
uf̃ + φ′f̃V (ν). (4.13)

Now we extract factor u from the curvature term R̄νi1i above by the method as Andrade-Barbosa-Lira
[30] and Chen-Li-Wang [4]. Let {e′1, · · · , e′n} a local orthonormal frame of M , then we can define an
orthonormal frame on M̄n+1 by Ēi =

1
φe

′
i, 1 ≤ i ≤ n, Ē0 = ∂

∂ρ , and vice versa. Since V = φĒ0 and
V ⊥ Ei, i ≥ 2 at X0, we may choose Ē2 = E2, · · · , Ēn = En around X0. Then V = φĒ0 and Ē1 lie in
the plane perpendicular to Span{Ē2, · · · , Ēn} in TX0M̄

n+1. Similarly, since E1 and ν are perpendicular
to Span{E2, · · · , En}, they lie in the same plane as V (X0) and Ē1 in TX0M̄

n+1.

By V = 〈V,E1〉E1 + 〈V, ν〉ν and 〈V, Ē1〉 = φ〈Ē0, Ē1〉 = 0, we obtain

0 = 〈V, Ē1〉 = 〈V,E1〉〈E1, Ē1〉+ u〈ν, Ē1〉 ⇒ 〈E1, Ē1〉 = −u〈ν, Ē1〉
〈V,E1〉 . (4.14)
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In the orthonormal frame {Ē1, · · · , Ēn, Ē0}, the vectors ν and E1 can be decomposed into

ν = 〈ν, Ē0〉Ē0 + 〈ν, Ē1〉Ē1 =
u

φ
Ē0 + 〈ν, Ē1〉Ē1, (4.15)

E1 = 〈E1, Ē0〉Ē0 + 〈E1, Ē1〉Ē1. (4.16)

By Lemma 2.1 and (4.14)-(4.16), we have R̄ν111 = 0 and for i ≥ 2,

R̄νi1i = R̄(ν,Ei, E1, Ei)

=
u

φ
R̄(Ē0, Ēi, E1, Ēi) + 〈ν, Ē1〉R̄(Ē1, Ēi, E1, Ēi)

=
u

φ
〈E1, Ē0〉R̄(Ē0, Ēi, Ē0, Ēi) + 〈ν, Ē1〉〈E1, Ē1〉R̄(Ē1, Ēi, Ē1, Ēi)

= u

(
1

φ
〈E1, Ē0〉R̄(Ē0, Ēi, Ē0, Ēi)− 〈ν, Ē1〉2

〈V,E1〉 R̄(Ē1, Ēi, Ē1, Ēi)

)
(4.17)

Inserting h11 = uγ′, h1i = 0, i ≥ 2, (4.12) and (4.17) into (4.13), we obtain

0 ≥ α2u2F 11 +

(
α2

t4
+

2α

t3

)
F 11〈V,E1〉2 − C1αF

11 − C2α|〈V,E1〉||f̃ν(E1)|

− C3|f̃V (ν)| − C4α, (4.18)

where C1, · · · , C4 are large positive constants depending on n, p, |ρ|C0 . Based on the C0 estimate, we
have 0 < r1 ≤ ρ ≤ r2. This implies that t = Φ(ρ) has positive lower and upper bounds. Note that
|〈V,E1〉| ≥ |V | sin θ0 = φ2 sin θ0 has a positive lower bound at X0, and therefore we have(

α2

t4
+

2α

t3

)
F 11〈V,E1〉2 − C1αF

11 ≥ 2c0α
2F 11 − C1αF

11,

where c0 is a small positive constant depending on |ρ|C0 and θ0. By taking α sufficiently large such that
c0α > C1, we have(

α2

t4
+

2α

t3

)
F 11〈V,E1〉2 − C1αF

11 ≥ c0α
2F 11 ≥ c0pθα

2 (4.19)

where we have used (4.12) in the last inequality. Therefore, by dropping the positive term α2u2F 11 in
(4.18) and inserting (4.19) into (4.18), we derive

0 ≥ c0α
2 − C2α|〈V,E1〉||f̃ν(E1)| − C3|f̃V (ν)| − C4α.

Thus, we get a contradiction if α is large enough. Therefore Case B cannot take place for large α. The
proof is completed.

5. C0 estimate and existence result

In this section, we establish C0 estimate of the solution for equation (1.1), and use the method of con-
tinuity [10] to obtain the existence of a closed p-convex star-shaped hypersurface Σ satisfying equation
(1.1) with n

2 ≤ p ≤ n− 1.

© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 39



For t ∈ [0, 1], we define

ft(V (X), ν(X)) = tf(V (X), ν(X)) + (1− t)ϕ(ρ)Fp(κ(ρ)),

where κ(ρ) = φ′

φ and ϕ is a positive function defined on I satisfying (a) ϕ > 0; (b) ϕ(ρ) > 1 for ρ ≤ r1;
(c) ϕ(ρ) < 1 for ρ ≥ r2 and (d) ϕ′(ρ) < 0.

Now we embed equation (1.1) into the following equations for star-shaped hypersurfaces Σt:

F (b) = f̃t(V (Xt), νt(Xt)), (5.1)

where f̃t = f
1

C
p
n

t , Xt = (z, ρt(z)) (z ∈ M) is the position vector of Σt, νt is the unit normal vector of
Σt. Obviously, ft(V (Xt), νt(Xt)) is strictly positive for |V (Xt)| ∈ [r1, r2]. There exists a unique point
r0 ∈ (r1, r2) such that ϕ(r0) = 1, then the geodesic sphere with radius r0 satisfying equation (5.1) when
t = 0. By Evans-Krylov theorem, we need to establish the C0, C1 and C2 estimates of solutions for
equation (5.1) to obtain the existence result.

Theorem 5.1. Let f ∈ C2
(
π−1(Br2 \Br1)× S

n
)

be a positive function. Suppose assumptions (A1) and
(A2) hold. Then there is a unique closed star-shaped p-convex hypersurface Σt in M̄n+1 satisfying (5.1)
with n

2
≤ p ≤ n− 1. Moreover, for 0 ≤ t ≤ 1, r1 ≤ ρt ≤ r2.

Proof. For the C0 estimates of ρt, we need the crucial assumption (A2). By the assumption (b), (c) of ϕ,
we can verify that, for t ∈ [0, 1)

ft(V,
V

|V |) > pC
p
n

(
φ′

φ

)Cp
n

(ρ), for ρ = r1, (5.2)

ft(V,
V

|V |) < pC
p
n

(
φ′

φ

)Cp
n

(ρ), for ρ = r2. (5.3)

We claim that for any t ∈ [0, δ), r1 < ρt < r2 on M . Due to the continuous dependence of ρt on
t ∈ [0, δ), we can assume that max ρt0 = ρt0(z0) = r2 for some t0 ∈ (0, δ) on the contrary. By (2.3)-
(2.5), we have, at Xt0(z0)√

(gt0)
−1{(ht0)ij}

√
(gt0)

−1 =
1

φ2
δ2ij
(−∇′

ij(ρt0) + φφ′δij
) ≥ φ′

φ
δij. (5.4)

By (5.3), (5.4) and equation (1.1), we have, at X0,

ft0(V (Xt0(z0)),
V (Xt0(z0))

|V (Xt0(z0))|
) < pC

p
n

(
φ′

φ

)Cp
n

(ρt0(z0)), Fp(κ) ≥ pC
p
n

(
φ′

φ

)Cp
n

(ρt0(z0)) ,

which contradicts with equation (5.1). Similarly, we can show ρt(z) > r1 on M for t ∈ [0, δ).

For the C1 estimates of ρt, we need the crucial assumption (A1). For any given ν,

∂

∂ρ

(
φCp

nft(V, ν)
)
= Cp

nφ
Cp

n−1φ′ft(V, ν) + φCp
n
∂

∂ρ
(ft(V, ν))

= Cp
nφ

Cp
n

[
κ(ρ)ft(V, ν) +

∂

∂ρ
(ft(V, ν))

]
.
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By the Lemma 4 in [30], we can choose ϕ such that

κ(ρ)ft(V, ν) +
∂

∂ρ
(ft(V, ν)) < 0.

So we have, for any given ν,

∂

∂ρ
[φCp

nft(V, ν)] ≤ 0, where |V | = φ(ρ). (5.5)

The C2 estimates for ρt has already been established in Section 2. Based on the above prior estimates,
we use the continuity methods to obtain the existence results.

Let S = {s ∈ [0, 1] : equation (5.1) has a p-convex solution when t = s}. Recalling that ρ0(z) = r0 is
the unique p-convex solution of equation (5.1). Therefore, 0 ∈ S. Since equation (5.1) is strictly elliptic,
by implicit function theorem that there exists a small constant δ ∈ (0, 1) such that for any t ∈ [0, δ),
equation (5.1) admits a unique p-convex solution ρt which continuously depends on t.

By Evans-Krylov theorem, for α ∈ (0, 1), we have

‖ρt‖2,α ≤ C, when t ∈ [0, δ).

for some constant C > 0. Hence, equation (5.1) with t = δ obtain a unique solution ρδ = limt→δ− ρt,

By implicit function theorem, equation (5.1) admits a unique p-convex solution ρt for t ∈ [δ, 2δ). We
also can show r1 < ρt < r2 for t ∈ [δ, 2δ) ∩ [0, 1) as above. Repeating the process, we have S = [0, 1].
It implies that there is a unique solution of equation (5.1) at t = 1. The theorem is now proved.
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