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ABSTRACT. This paper is concerned with the nonlinear strongly damped wave equations involving the fractional Lapla-
cian and regional fractional Laplacian with various boundary conditions. We first prove the existence and uniqueness of
weak solutions using the compactness method and weak convergence techniques in Orlicz spaces. Then we study the
existence and regularity of global attractors of associated semigroups. The main novelty of the obtained results here is to
improve and extend the previous results in [6, 7, A.N. Carvalho and J.W. Cholewa] and [24, J. Shomberg].
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1. Introduction

In this paper, we will consider the strongly damped wave equations involving fractional diffusions with
various boundary conditions as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

utt + (−Δ)αut + (−Δ)βu+ f(u) = g in Ω× (0,∞),

u = 0 on (R3\Ω)× (0,∞),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = u1(x) in Ω,

(1.1)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
utt +Aα

Ωut +Aβ
Ωu+ f(u) = g in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = u1(x) in Ω,

(1.2)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

utt +Aα
Ωut +Aβ

Ωu+ f(u) = g in Ω× (0,∞),

BN,αN 2−2αu+ γαu = 0 on ∂Ω× (0,∞),

BN,βN 2−2βu+ γβu = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = u1(x) in Ω,

(1.3)

where Ω ⊂ R
3 is an arbitrary bounded open set with boundary ∂Ω. The nonlinearity f satisfies a dis-

sipativity condition (see Section 3 below). N 2−2αu and N 2−2βu are the fractional normal derivatives of
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the function u. BN,α and BN,β are normalized constants (see Theorem 2.2 below). γα and γβ are nonneg-
ative constants. (−Δ)α and (−Δ)β are the fractional Laplacian operators. Aα

Ω and Aβ
Ω are the regional

fractional Laplacian operators.

The strongly damped wave equations appear in many relevant physical applications (see e.g. [12, 22,
24]). They have been investigated quite extensively by several authors in recent years (see e.g. [3, 6, 7,
12, 13, 14, 21, 22, 24]), with particular regard to their asymptotics.

Recently, the nonlocal equations of fractional order have gained a lot of attention from the partial
differential equations research community. To the best of our knowledge, the strongly damped wave
equation with the fractional operator (−Δ)sut, 0 < s < 1 (such powers may be defined through a
Fourier series) given by

utt + (−Δ)sut + (−Δ)u+ f(u) = 0,

was studied in [6]. A.N. Carvalho and J.W. Cholewa proved the global well-posedness results for
s ∈ [1

2
, 1] and the existence of a compact global attractor for associated semigroup in different cases

of nonlinearity. In [7], they studied the local well-posedness of the above equation with f(u, ut) in place
of f(u). Latter, J. Shomberg [24] considered the following semilinear strongly damped wave equations
with fractional diffusion operators

utt + (−Δ)αut + (−Δ)βu+ f(u) = 0,

where (−Δ)α and (−Δ)β are the fractional Laplace operators with extended homogeneous Dirichlet
boundary condition. The author proved the existence, uniqueness, global well-posedness, regularity of
solutions and relation between the solutions. Moreover, the analytic and Gevrey class properties of the
semigroup were discussed for certain parameters α and β, and for certain exponents.

Fractional diffusion operators have been used to study anomalous diffusions that cannot be properly
described by integer-order partial differential equations. Importantly, fractional diffusion operators ap-
pear in the treatment of reaction diffusion equations [16], from which our results are borrowed. In order
to make the paper as self-contained as possible, we start by introducing the fractional Laplacian. Let
0 < s < 1, Ω ⊂ R

N an arbitrary open set and let

L1(Ω) := {u : Ω → R measurable,
∫
Ω

|u(x)|
(1 + |x|)N+2s

dx <∞}.

For u ∈ L1(R), x ∈ R
N and ε > 0, we write

(−Δ)sεu(x) := CN,s

∫
{y∈RN ,|y−x|>ε}

u(x)− u(y)

|x− y|N+2s
dy,

with the normalized constant CN,s given by

CN,s :=
s22sΓ(N+2s

2 )

π
N
2 Γ(1− s)

, (1.4)
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where Γ denotes the usual Gamma function. The fractional Laplacian (−Δ)su of the function u is defined
by

(−Δ)su(x) := CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy = lim

ε↓0
(−Δ)sεu(x), x ∈ R

N ,

provided that the limit exists.

We notice that in the whole space RN , using the Fourier transform, (−Δ)s can be defined as a pseudo-
differential operator with symbol |ξ|2s. If one wishes to consider the fractional Laplace operator (−Δ)s

on open subsets Ω of RN it cannot be used on Ω automatically due to its nonlocal character. In order to
give a proper definition, we follow [18, 19, 28] in the following fashion. Let Ω be an arbitrary open set
in R

N . For u ∈ L1(Ω), x ∈ Ω and ε > 0, we let

As
Ω,εu(x) := CN,s

∫
{y∈Ω,|y−x|>ε}

u(x)− u(y)

|x− y|N+2s
dy,

and we define the operator As
Ω as follows

As
Ωu(x) := CN,sP.V.

∫
Ω

u(x)− u(y)

|x− y|N+2s
dy = lim

ε↓0
As

Ω,εu(x), x ∈ Ω,

provided that the limit exists. We call the operator As
Ω the regional fractional Laplacian.

The fractional Laplacian operator and the regional fractional Laplacian operators have important moti-
vations. In the context of physical motivation, for a point x ∈ Ω, the fractional Laplacian (−Δ)s accounts
for the interactions between x and y for all y ∈ R

N\{x}. Whereas, the regional fractional Laplacian As
Ω

accounts for the interactions between x and y for all y ∈ Ω\{x}. They describe a particle jumping
from one point x ∈ Ω to another point y ∈ Ω with intensity proportional to 1

|x−y|N+2s . In the context of
probability, the fractional Laplacian operator (−Δ)s represents the infinitesimal generator of a symmet-
ric 2s-stable Lévy process and the fractional Laplacian (−Δ)s on a bounded domain Ω with extended
homogeneous Dirichlet boundary condition represents that particles are killed upon leaving the domain
Ω. Whereas, the regional fractional Laplacian As

Ω is considered as the fractional Laplacian (−Δ)s by
restricting its measure on Ω.

The paper is organized as follows. In Section 2, we recall some intermediate results that will be used
to obtain our main results. In Section 3, we prove the existence and uniqueness of weak solutions to
the strongly damped wave equations involving fractional diffusions with various boundary conditions
(1.1)-(1.3). In Section 4, we prove the existence of global attractors in H

β
K(Ω) and their regularity.

2. Prelimilaries

In this section, we recall some intermediate results that will be used to obtain our main results.

Let Ω ⊂ R
N be an arbitrary bounded open set with boundary ∂Ω. We denote by D(Ω) the space of test

functions on Ω. For s ∈ (0, 1), we denote by

W s,2(Ω) := {u ∈ L2(Ω) :

∫
Ω

∫
Ω

|u(x)− u(y)|2
|x− y|N+2s

dxdy <∞}
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the fractional order Sobolev space endowed with the norm

‖u‖W s,2(Ω) :=

⎛⎝∫
Ω

|u(x)|2dx+ CN,s

2

∫
Ω

∫
Ω

|u(x)− u(y)|2
|x− y|N+2s

dxdy

⎞⎠
1
2

.

We let

W s,2
0 (Ω) := D(Ω)

W s,2(Ω)
.

We have the following result taken from [17, Chapter 1] (see also [4, Corollary 2.8 and Remark 2.3] and
[28])

Theorem 2.1. Assume that Ω ⊂ R
N is a bounded domain with Lipschitz continuous boundary. For every

0 < s ≤ 1
2 , the spaces W s,2(Ω) and W s,2

0 (Ω) coincide with equivalent norms.

Remark 2.1. In view of Theorem 2.1, to talk about well-defined traces (not necessarily null) of functions
in W s,2(Ω), it is not a restriction to assume that 1

2 < s < 1.

For advantages of using the method of bilinear Dirichlet forms, our framework is borrowed from [16,
28, 29](see also [26, 27]).

Let EE,s be the bilinear symmetric closed form with its domain

D(EE,s) = {u ∈W s,2(RN), u = 0 on R
N\Ω}

and defined for u, v ∈ D(EE) by

EE,s(u, v) =
CN,s

2

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy.

Let As
E be the closed linear selfadjoint operator on L2(Ω) associated with EE,s in the sense that{
D(As

E) :=
{
u ∈ D(EE,s), (−Δ)su ∈ L2(Ω)

}
,

As
Eu = (−Δ)su.

We call As
E is said to be a realization of the fractional Laplace operator (−Δ)s on L2(Ω) with the

extended homogeneous Dirichlet boundary condition.

Definition 2.1. [29, Definition 2.5(a)] Let u ∈ W s,2(Ω). We say that As
Ωu ∈ L2(Ω) if there exists

w ∈ L2(Ω) such that

CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy =

∫
Ω

w(x)v(x)dx

for all v ∈ D(Ω), and hence for all v ∈ W s,2
0 (Ω) by density. In that case, we write As

Ωu = w.

Next, we introduce the bilinear symmetric closed form ED,s with domain D(ED,s) = W s,2
0 (Ω) as

follows

ED,s(u, v) =
CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy, ∀u, v ∈ W s,2

0 (Ω).
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Let As
D be the closed linear selfadjoint operator on L2(Ω) associated with ED,s in the sense that⎧⎨⎩D(As

D) :=
{
u ∈ W s,2

0 (Ω),As
Ωu ∈ L2(Ω)

}
,

As
Du = As

Ωu.

In that case, As
D is said to be a realization of the regional fractional Laplace operator As

Ω on L2(Ω) with
the Dirichlet boundary condition.

Before we introduce realizations of the regional fractional Laplace operator with fractional Neumann
and fractional Robin boundary conditions, respectively, let us first recall the following integration by
parts formula taken from [18, Theorem 3.3].

Theorem 2.2. Let 1
2 < s < 1 and Ω ⊂ R

N be a bounded domain of class C1,1. Setting

C2
2s(Ω) :=

{
u : u(x) = a(x)ρ(x)2s−1 + b(x), ∀x ∈ Ω, for some a, b ∈ C2(Ω)

}
,

where ρ(x) := dist(x, ∂Ω), x ∈ Ω. For u ∈ C2
2s(Ω) and z ∈ ∂Ω, we define the fractional normal

derivative N 2−2su of the function u by

N 2−2su(z) = − lim
t↓0

du(z + 
n(z)t)

dt
t2−2s,

where 
n(z) is the inner normal vector of ∂Ω at the point z ∈ ∂Ω. Then for every u ∈ C2
2s(Ω) and

v ∈ W s,2(Ω), one has As
Ωu ∈ L2(Ω), N 2−2su ∈ L2(∂Ω), and∫

Ω

v(x)As
Ωu(x)dx =

CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

− BN,s

∫
∂Ω

vN 2−2sudσ,

(2.1)

where the constant BN,s is determined by

C1,s

CN,s
BN,s :=

⎧⎨⎩Cs if N = 1,

2π
N−1

2 Cs

Γ(N−1
2 )

∫ π
2

0 cos2s(θ) sinN−2(θ)dθ if N ≥ 2,
(2.2)

and

Cs :=
C1,s

2s(2s− 1)

∞∫
0

(τ − 1)1−2s − {max(τ, 1)}1−2s

τ 2−2s
dτ,

and C1,s is given by (1.4) with N = 1.

Remark 2.2. We see from (2.1) that BN,sN 2−2su plays the role as normal derivative ∂νu in the classical
Green formula for the Laplace operator (∂νu := ∇u · ν is the normal derivative of u in direction of the
outer normal vector ν).

Then, we recall the weak formulation on nonsmooth domains of a fractional normal derivative.
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Definition 2.2. [29, Definition 2.5(b)] Let 1
2 < s < 1 and Ω ⊂ R

N be a bounded domain with Lipschitz
continuous boundary ∂Ω. Let u ∈ W s,2(Ω) such that As

Ωu ∈ L2(Ω). We say that u has a fractional
normal derivative in L2(∂Ω) if there exists ψ ∈ L2(∂Ω) such that∫

Ω

v(x)As
Ωu(x)dx =

CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy −

∫
∂Ω

ψvdσ,

for all v ∈ W s,2(Ω) ∩ C(Ω), and hence for all v ∈ W s,2(Ω) by density and trace theorem. In that case,
we write BN,sN 2−2su = ψ and ψ is called the fractional normal derivative of u.

We have Green’s type formula from Definition 2.1 and Definition 2.2 (see [29, Remark 2]) that∫
Ω

v(x)As
Ωu(x)dx =

CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

− BN,s

∫
∂Ω

vN 2−2sudσ

holds for all v ∈ W s,2(Ω) whenever u ∈ W s,2(Ω), As
Ωu ∈ L2(Ω) and BN,sN 2−2su exists in L2(∂Ω).

Throughout this section, we assume that Ω ⊂ R
N is a bounded domain with Lipschitz continuous

boundary ∂Ω and 1
2 < s < 1. We consider the bilinear symmetric closed form EN ,s on domainD(EN ,s) =

W s,2(Ω) given by

EN ,s(u, v) =
CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy, ∀u, v ∈ W s,2(Ω).

Let As
N is the closed linear self-adjoint operator associated with EN ,s in the sense that⎧⎪⎪⎨⎪⎪⎩
D(As

N ) := {u ∈ W s,2(Ω),As
Ωu ∈ L2(Ω),N 2−2su exists in L2(∂Ω)

and N 2−2su = 0 on ∂Ω},
As

Nu = As
Ωu.

We call As
N a realization of the regional fractional Laplace operator As

Ω on L2(Ω) with fractional Neu-
mann type boundary conditions.

Finally, we consider the bilinear symmetric closed form ER,s on domain D(ER,s) = W s,2(Ω) and
defined for u, v ∈ W s,2(Ω) by

ER,s(u, v) =
CN,s

2

∫
Ω

∫
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy +

∫
∂Ω

γsuvdσ.

Let As
R be the closed linear self-adjoint operator associated with ER,s in the sense that⎧⎪⎪⎨⎪⎪⎩
D(As

R) := {u ∈ W s,2(Ω),As
Ωu ∈ L2(Ω),N 2−2su exists in L2(∂Ω)

and BN,sN 2−2su + γsu = 0 on ∂Ω},
As

Ru = As
Ωu,

where N 2−2su is to be understood in the sense of Definition 2.2 and BN,s is the constant given in (2.2).
Hence, As

R is said to be realization on L2(Ω) of the operator As
Ω with fractional Robin type boundary

conditions.

© 2026 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 6



Remark 2.3. The bilinear symmetric closed forms ED,s, EN ,s and ER,s are continuous and elliptic (see
[29, Proposition 2.1]). Since W s,2(Ω) = W s,2

0 (Ω), if 0 < s ≤ 1
2 , then we have that ED,s = EN ,s = ER,s

and hence As
D ≡ As

N ≡ As
R.

3. Existence and uniqueness of weak solutions

We rewrite problems (1.1)-(1.3) in the unified form⎧⎪⎪⎨⎪⎪⎩
utt + Aα

Kut + Aβ
Ku+ f(u) = g in Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = u1(x) in Ω,

(3.1)

where Aα
K and Aβ

K , K ∈ {D,E,N , R}, are the linear self-adjoint operators introduced in Section 2.

To study problem (3.1), we suppose that the following assumptions hold:

(D) The domain Ω and s satisfy the following conditions:

(i) If K = D, then Ω is an arbitrary bounded open set and 0 < s < 1,

(ii) If K ∈ {N , R}, then Ω is a bounded set with Lipschitz continuous boundary and 1
2 < s < 1.

(F) Let f : R → R be a continuous function such that

(i) There exists a positive constant c0 such that, for 1 ≤ ρ < 3
3−2β ,

|f(s1)− f(s2)| ≤ c0|s1 − s2|(1 + |s1|ρ−1 + |s2|ρ−1), ∀s1, s2 ∈ R. (3.2)

(ii) There exists some positive constant λK,β (see (3.5) and (3.6)) such that

lim inf
|s|→∞

f(s)

s
≥ −λK,β, (3.3)

(iii) If K = N , then f(s)− ηs satisfies (3.2) and (3.3) for some η ≥ |Ω|.
(G) g ∈ L2(Ω).

(P) 0 < β
2 ≤ α < β < 1.

We identify L2(Ω) with its dual space L2(Ω)∗, we consider the family of Hilbert spacesD(A
s
2

K), 0 < s <

1, whose inner product and norms are given by

(u, v)
D(A

s
2
K )

= (A
s
2

Ku,A
s
2

Kv)L2(Ω) and ‖u‖
D(A

s
2
K)

= ‖A s
2

Ku‖L2(Ω),

for u, v ∈ D(A
s
2

K) and K ∈ {D,E,N , R}. We also recall the continuous embedding

D(A
s
2

K) ↪→ L
6

3−2s (Ω), (3.4)

and the compact and dense injections

D(A
s
2

K) ↪→ D(A
r
2

K), ∀s > r.
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It follows from [16, Theorem 2.5] that there exists the best Sobolev-Poincaré constant λK,s :=

λK,s(s,Ω) > 0 such that

λK,s‖u‖2L2(Ω) ≤ ‖u‖2
D(A

s
2
K)
, ∀u ∈ D(A

s
2

K), K ∈ {D,E,R}, (3.5)

and if K = N , there is λN ,s := λN ,s(s,Ω) > 0 such that

λN ,s‖u‖2L2(Ω) ≤ ‖u‖2
D(A

s
2
N )

+ ‖u‖2L1(Ω), ∀u ∈ D(A
s
2

N ). (3.6)

Setting

H
s
K,σ(Ω) := D(A

(1+σ)s
2

K )×D(A
σs
2

K ).

The space H
s
K,σ(Ω) is the Hilbert space equipped with the norm as

‖ξ‖2
Hs

K,σ(Ω)
:= ‖u‖

D(A
(1+σ)s

2
K )

+ ‖v‖2
D(A

σs
2

K )
, ∀ξ = (u, v) ∈ H

s
K,σ(Ω).

and the inner-product in H
s
K,σ(Ω) as

〈ξ1, ξ2〉Hs
K,σ(Ω)

:= (A
(1+σ)s

2

K u,A
(1+σ)s

2

K v)L2(Ω) + (A
σs
2

K v1, A
σs
2

K v2)L2(Ω).

Then

H
s
K(Ω) := H

s
K,0(Ω) = D(A

s
2

K)× L2(Ω).

The space H
s
K(Ω) is also the Hilbert space whose square is given by

‖ξ‖2
Hs

K(Ω) := ‖u‖
D(A

s
2
K)

+ ‖v‖2L2(Ω), ∀ξ = (u, v) ∈ H
s
K(Ω),

and its inner-product in H
s
K(Ω) is

〈ξ1, ξ2〉Hs
K(Ω) := (A

s
2

Ku,A
s
2

Kv)L2(Ω) + (v1, v2)L2(Ω),

for every ξ1 = (u1, v1) and ξ2 = (u2, v2) in H
s
K(Ω).

We define the linear unbounded operator Aβ,α : D(Aβ,α) ⊂ H
β
K(Ω) → H

β
K(Ω) given by

Aβ,α :=

[
0 −I
Aβ

K Aα
K

]
,

and

Aβ,α

[
u

v

]
=

[
0 −I
Aβ

K Aα
K

] [
u

v

]
=

[
−v

Aα
K(A

β−α
K u+ v)

]
,

for all (u, v) ∈ D(Aβ,α).

The adjoint of Aβ,α is determined as follows. The proof is calculation similar to [7, Proposition 1] (see
also [2, Lemma 3.1]). We omit it here

Proposition 3.1. The adjoint of Aβ,α is the operator A∗
β,α defined by, for any 0 < α, β < 1,

A
∗
β,α :=

[
0 I

−Aβ
K Aα

K

]
,
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Since Aβ,α = A
∗∗
β,α, then Aβ,α is closed (see also [24, Proposition 2.3]). Moreover, the operator −Aβ,α

is dissipative on H
β
K(Ω) because, for any ξ = (u, v) in H

β
K(Ω),

〈−Aβ,αξ, ξ〉 = −‖v‖2
D(A

α
2
K )
. (3.7)

We define the functional F : Hβ
K(Ω) → H

β
K(Ω) as

F(ξ) =

[
0

f(u)

]
, ∀ξ = (u, v) ∈ H

β
K(Ω).

We have the following proposition and its proof is similar to [24, Proposition 2.8]. We skip it here

Proposition 3.2. Assume the conditions (F) and (P) hold. The functional F is locally Lipschitz continu-
ous.

We now return to the nonlinearity and give some important estimates. It follows from the condition (F)
that there exist μ ∈ (0, λK,β], c1 = c1(f, |Ω|) ≥ 0 and c2 = c2(f, |Ω|) ≥ 0 such that, for all u ∈ D(A

β
2

K) ,

(f(u), u)L2(Ω) ≥ −(1− μ

λK,β
)‖u‖2

D(A
β
2
K )

− c1, (3.8)

and ∫
Ω

F (u)dx ≥ −1

2
(1− μ

λK,β
)‖u‖2

D(A
β
2
K )

− c2, (3.9)

where F (s) =
∫ s

0 f(τ)dτ . Moreover, there exists C > 0 such that for all s ∈ R,

|f(s)| ≤ C(1 + |s|ρ). (3.10)

Hence, if u ∈ Lρ+1(Ω), there exists c3 = c3(c0, f, |Ω|) such that∫
Ω

F (u)dx ≤ c3(1 + ‖u‖ρ+1
Lρ+1(Ω)), (3.11)

and if u ∈ L2ρ(Ω), there exists c4 = c4(c0, f, |Ω|) such that

‖f(u)‖2L2(Ω) ≤ c4(1 + ‖u‖2ρL2ρ(Ω)). (3.12)

We define

G :=

[
0

g

]
, ∀g ∈ L2(Ω).

We can now study the system (3.1) under the abstract form in H
β
K(Ω) as{

ξt + Aβ,αξ + F(ξ) = G in Ω× (0,∞),

ξ(x, 0) = ξ0(x) in Ω,
(3.13)

where ξ0 = (u0, u1) ∈ H
β
K(Ω).

We now give the definition of weak solutions.
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Definition 3.1. A weak solution to problem (3.13) on [0, T ] is a map ξ = (u, ut) ∈ L∞(0, T ;Hβ
K(Ω))

satisfying ξ(0) = ξ0 almost everywhere and

〈 d
dt
ξ(t), ϑ〉

H
β
K(Ω) + 〈ξ(t),A∗

β,αϑ〉Hβ
K(Ω) + 〈F(ξ), ϑ〉

H
β
K(Ω) = 〈G, ϑ〉

H
β
K(Ω), (3.14)

holds for all test functions ϑ = (ϕ, ψ) ∈ D(A∗
β,α) and for a.e. t ∈ (0, T ).

The map ξ = (u, ut) is a global weak solution if it is a weak solution on on [0, T ], for every T > 0.

Theorem 3.1. Let ξ0 = (u0, u1) ∈ H
β
K(Ω) be given. Assume (D) (F), (G), and (P) hold. Then problem

(3.13) has a unique global weak solution ξ = (u, ut) in sense of Definition 3.1. Moreover, for any T > 0,
the following regularity satisfies

ut ∈ L2(0, T ;D(A
α
2

K)). (3.15)

Proof. i) Existence. Since the operators Aα
K and Aβ

K are positive and self-adjoint, the operator Aβ,α

possesses compact resolvent on H
β
K(Ω), hence admitting an eigenbasis in H

β
K(Ω) ([20, Theorem 3.1(a)]).

Let {Ψ}∞i=1 ⊂ H
β
K(Ω) be eigenfunctions satisfying

Aβ,αΨi = ΛiΨ, i = 1, 2, · · · .
We know by spectral theory that the eigenvalues Λi are nonnegative. Moreover, 0 is an eigenvalue of
Aβ,α for K = N and is not an eigenvalue of Aβ,α for K ∈ {D,E,R}. Thanks to [16, Theorem 2.5], the
components of every Ψi = (�i, φi), i = 1, 2, · · · , satisfy

(�i, φi) ∈ (D(Aβ
K) ∩ L∞(Ω))× (D(Aα

K) ∩ L∞(Ω)).

Moreover, {�i}∞i=1 can be an orthogonal basis in W β,2
K (Ω) and {φi}∞i=1 can be an orthonormal basis in

L2(Ω). Define the subspaces

Xn := span{Ψ1,Ψ2, · · · ,Ψn} and X∞ :=
∞⋃
n=1

Xn.

By construction, X∞ is dense in D(Aβ,α). For each integer n ≥ 1, we consider the approximate solution
to (3.13) in the form

ξn(t) =
n∑

j=1

Aj(t)Ψj = (
n∑

j=1

Aj(t)�i,
n∑

j=1

A
′
j(t)φj),

where Aj(t) are gotten from solving the following problem{
〈 d
dt
ξn(t),Ψj〉Hβ

K(Ω) + 〈ξn(t),A∗
β,αΨj〉Hβ

K(Ω) + 〈PnF(ξn),Ψj〉Hβ
K(Ω) = 〈G,Ψj〉Hβ

K(Ω),

〈ξn(0),Ψj〉Hβ
K(Ω) = 〈ξ0n,Ψj〉Hβ

K(Ω),
(3.16)

for j = 1, 2, · · · , n, and where ξ0n = Pnξ0; Pn is the n-dimensional projection of L2(Ω) onto Xn. Since
f is the continuous function, we apply Cauchy-Peano theorem for ODEs (3.16) to find that there exists
Tn > 0 such that the unique solutions Aj(t) of (3.16) belong to C2([0, Tn]) in the classical sense for
j = 1, 2, · · · , n and all t ∈ [0, Tn]. We now prove that the approximate solutions are global for every
n ≥ 1. To do this, multiplying by Aj(t) in (3.16) and summing from j = 1 to n, we get

1

2

d

dt
‖ξn‖2

H
β
K(Ω)

+ 〈ξn,A∗
β,αξn〉Hβ

K(Ω) + 〈PnF(ξn), ξn〉Hβ
K(Ω) = 〈G, ξn〉Hβ

K(Ω). (3.17)
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It follows form (3.7) that

〈ξn,A∗
β,αξn〉Hβ

K(Ω) = 〈Aβ,αξn, ξn〉Hβ
K(Ω) = ‖unt‖2

D(A
α
2
K )
, (3.18)

where unt = dun

dt .

We have

〈PnF(ξn), ξn〉Hβ
K(Ω) = 〈F(ξn), Pnξn〉Hβ

K(Ω) = 〈F(ξn), ξn〉Hβ
K(Ω)

= (f(un), unt)L2(Ω)

=
d

dt
(F (un), 1)L2(Ω). (3.19)

We also have

〈G, ξn〉Hβ
K(Ω) = (g, unt)L2(Ω) =

d

dt
(g, un)L2(Ω). (3.20)

Combining (3.17)-(3.20) yields the differential identity

d

dt
{‖ξn‖2

H
β
K(Ω)

+ 2(F (un), 1)L2(Ω) − 2(g, un)L2(Ω)}+ 2‖unt‖2
D(A

α
2
K )

= 0. (3.21)

Integrating (3.21) on the interval [0, t], where t < Tn, leads

‖ξn(t)‖2
H

β
K(Ω)

+ 2(F (un(t)), 1)L2(Ω) − 2(g, un(t))L2(Ω) + 2

t∫
0

‖unt(τ)‖2
D(A

α
2
K )
dτ

= ‖ξn(0)‖2
H

β
K(Ω)

+ 2(F (un(0)), 1)L2(Ω) − 2(g, un(0))L2(Ω). (3.22)

It follows from the Cauchy inequality, (3.5), (3.6), (3.9), (3.11) and (3.22) that

μ(1− ε)

λK,β
‖ξn(t)‖2

H
β
K(Ω)

≤ 2λK,α

t∫
0

‖ξn(τ)‖2
H

β
K(Ω)

dτ + 2‖ξn(0)‖2
H

β
K(Ω)

+ 2c2

+ 2c3(1 + ‖un(0)‖ρ+1
Lρ+1(Ω)) + C(ε, μ, λK,β)‖g‖2L2(Ω)

≤ 2λK,α

t∫
0

‖ξn(τ)‖2
H

β
K(Ω)

dτ + 2‖ξ0‖2
H

β
K(Ω)

+ 2c2

+ 2c3(1 + ‖u0‖ρ+1

D(A
β
2
K )

) + C(ε, μ, λK,β)‖g‖2L2(Ω), (3.23)

where the last inequality follows from the embedding D(A
β
2

K) ↪→ Lρ+1(Ω) when 1 ≤ ρ < 3
3−2β

and ε is
small enough.

Using the Gronwall integral inequality, we deduce from (3.23) that

‖ξn(t)‖2
H

β
K(Ω)

≤ C(‖ξ0‖Hβ
K(Ω), c2, c3)e

2λK,βλK,αT

μ(1−ε) . (3.24)

Since the right hand side of (3.24) is independent of n and t, we deduce Tn = +∞, for every n ≥ 1, i.e.,
the approximate solutions are unique global in time. Furthermore, we obtain the following estimates for
any given 0 < T < +∞,

{ξn} is uniformly bounded in L∞(0, T ;Hβ
K(Ω)). (3.25)
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{un} is uniformly bounded in L∞(0, T ;D(A
β
2

K)). (3.26)

{unt} is uniformly bounded in L∞(0, T ;L2(Ω)). (3.27)

Since D(A
β
2

K) ↪→ L2ρ(Ω) when 1 ≤ ρ < 3
3−2β , it follows from (3.12) and (3.20) that

{f(un)} is uniformly bounded in Lq((0, T )× Ω),

for some q ≥ 1. Moreover, we deduce from (3.10) that

ess sup
t∈(0,T )

‖f(un(t))‖L1(Ω) ≤ ess sup
t∈(0,T )

C(|Ω|+ ‖un‖ρLρ(Ω))

≤ C(1 + ess sup
t∈(0,T )

‖un‖2ρ
D(A

β
2
K )

).

Hence,

{f(un)} is uniformly bounded in L∞(0, T ;L1(Ω)). (3.28)

From the uniform bounds (3.25), (3.26), (3.27) and using Alaoglu’s Theorem (cf. e.g., [23, Theorem
4.18]), there exist subsequence of {ξn} (we label the same) and functions

ξ ∈ L∞(0, T ;Hβ
K(Ω)), (3.29)

u ∈ L∞(0, T ;D(A
β
2

K)), (3.30)

ut ∈ L∞(0, T ;L2(Ω)), (3.31)

such that

ξn ⇀
∗ ξ in L∞(0, T ;Hβ

K(Ω)),

un ⇀
∗ u in L∞(0, T ;D(A

β
2

K)),

unt ⇀
∗ ut in L∞(0, T ;L2(Ω)).

Since D(A
β
2

K) ↪→ L2(Ω) is compact for any β ∈ (0, 1), we use the Aubin-Lions-Simon compactness
lemma (see e.g. [5]) to deduce the following embedding is compact

{u ∈ L2(0, T ;D(A
β
2

K)) : ut ∈ L2((0, T )× Ω)} ↪→ L2((0, T )× Ω).

Thus,

un → u strongly in L2((0, T )× Ω), (3.32)

and deduce that un → u a.e. in ΩT . Because of the continuity of f , we infer from (3.32) that, up to
subsequences, (by repeating the standard argument as in [24, Theorem 3.5, p.1329])

f(un)⇀ f(u) in L2((0, T )× Ω).
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Hence,

PnF(un)⇀ F(u) in L2((0, T )× Ω).

Using convergence properties above allow us to pass the limit in (3.16) in order to recover (3.14) via
standard density arguments. Moreover, repeating the standard argument as in [23, p. 225], we get ξ(0) =
ξ0 and this implies that ξ is a weak solution to problem (3.13).

ii) Additional regularity. In (3.14), we take ϑ = (unt, unt), we get

1

2

d

dt
{‖unt‖2L2(Ω) + ‖un‖2

D(A
β
2
K )

+ 2(F (un), 1)L2(Ω) − 2(g, un)L2(Ω)}

+‖unt‖2
D(A

α
2
K )

+ ‖unt‖2
D(A

β
2
K )

= 0. (3.33)

Integrating (3.33) over (0, t) leads to the identity

‖unt(t)‖2L2(Ω) + ‖un(t)‖2
D(A

β
2
K )

+ 2(F (un(t)), 1)L2(Ω) − 2(g, un(t))L2(Ω)

+ 2

t∫
0

‖unt(s)‖2
D(A

α
2
K )
ds+ 2

t∫
0

‖unt(s)‖2
D(A

β
2
K )
ds

= ‖unt(0)‖2L2(Ω) + ‖un(0)‖2
D(A

β
2
K )

+ 2(F (un(0)), 1)L2(Ω) − 2(g, un(0))L2(Ω). (3.34)

Since D(A
β
2

K) ↪→ D(A
α
2

K), it follows from (3.9), (3.11) and (3.34) that

{unt} is uniformly bounded in L2(0, T ;D(A
α
2

K)).

Thus, the additional regularity property (3.15) follows.

iii) Uniqueness and continuous dependence on the initial data. As usual, we consider any two weak
solutions ξ1 = (u1, u1t) and ξ2 = (u2, u2t) of (3.13) with initial data ξ01, ξ02 ∈ H

β
K(Ω), respectively. We

infer that ξ(t) = ξ1(t)− ξ2(t) satisfies{
ξt + Aβ,αξ + F(ξ1)−F(ξ2) = 0 in Ω× (0,∞),

ξ(x, 0) = ξ01(x)− ξ02(x) in Ω.
(3.35)

It follows from Proposition 3.2 that

|〈F(ξ1)−F(ξ2), ξ〉Hβ
K(Ω)| ≤ C(‖ξ‖

H
β
K(Ω), T )‖ξ‖2Hβ

K(Ω)
. (3.36)

Taking inner-product (3.35) with ξ, and using (3.7), (3.36) yields

d

dt
‖ξ‖2

H
β
K(Ω)

≤ C(t)‖ξ‖2
H

β
K(Ω)

.

Applying the Gronwall inequality, we infer from the last inequality that the solution is uniqueness and
continuous dependence with respect to the initial data.
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4. Global attractors and their regularity

4.1. Existence of global attractors

Thanks to Theorem 3.1, for each K ∈ {D,E,N , R}, we can define a strongly continuous (nonlinear)
semigroup SK(t) : H

β
K(Ω) → H

β
K(Ω) associated to problem (3.1) as follows:

SK(t)ξ0 := ξ(t) = (u(t), ut(t)),

where ξ(t) is the unique global weak solution of (3.1) with the initial datum ξ0.

We will see that in case of K = N , the analysis may be more complicated, and we may need stronger
conditions to obtain a result as in Lemma 4.2. Hence, we only consider K ∈ {D,E,R} in the sequel.
We will prove that the semigroup SK(t) has a global attractor AK on H

β
K(Ω). We also use C to denote

various positive constants whose values may change with each appearance.

We first recall the following technical lemma. Its proof can be found, for instance, in [3, Lemma 2.7]

Lemma 4.1. Let X ba a Banach space, and let U ⊂ C(R+, X). Let E : X → R bbe a function such
that

sup
t∈R+

E(ξ(t)) ≥ −m and E(ξ(0)) ≤M,

for some m,M ≥ 0 and every ξ ∈ U . In addition, assume that for every ξ ∈ U the function E(ξ(t)) is
continuous differentiable, and satisfies the differential inequality

d

dt
E(ξ(t)) + δ‖ξ(t)‖2X ≤ �,

for some δ > 0 and � > 0, both independent of ξ ∈ U . Then

E(ξ(t)) ≤ sup
z∈X

{
E(z) : δ‖z‖2X ≤ 2�

}
, ∀t ≥ m+M

�
.

We now show that {SK(t)}t≥0 has a bounded absorbing set B0 ⊂ H
β
K(Ω).

Lemma 4.2. Assume that ‖ξ0‖Hβ
K(Ω) ≤ R for any given R ≥ 0. There exist a constant R0 > 0 and

t0 = t0(R) such that

‖SK(t)ξ0‖Hβ
K(Ω) ≤ R0, ∀t ≥ t0.

Consequently, the set

B0 = {z ∈ H
β
K(Ω) : ‖z‖Hβ

K(Ω) ≤ R0}

is a bounded absorbing set for {SK(t)}t≥0 on H
β
K(Ω).

Proof. We consider the functional

�(t) = �(u(t)) = 2

∫
Ω

u(x,t)∫
0

f(τ)dτdx.
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Define

θ(t) = ut(t) + εu(t)

for some ε ∈ [0, ε0] ⊂ [0, 1]. Taking inner product (3.1) with θ yields

1

2

d

dt
E(t) + ‖A

α
2

Kθ‖2L2(Ω) + ε‖A
β
2

Ku‖2L2(Ω) − ε2‖A
α
2

Ku‖2L2(Ω)

= ε‖θ‖2L2(Ω) − ε2(u, θ)L2(Ω) + ε(g, u)L2(Ω) − ε(f(u), u)L2(Ω), (4.1)

where the energy functional E is defined as

E(t) = E(ξ(t)) = ‖θ(t)‖2L2(Ω) + ‖A
β
2

Ku‖2L2(Ω) − ε‖Aα
2

Ku‖2L2(Ω)

+�(t)− 2(g, u(t))L2(Ω).

Using (3.11), we find the bound of E from above

E(t) ≤ c5(1 + ‖ξ‖6
H

β
K(Ω)

). (4.2)

On the other hand, using (3.9), we get the bound of E from below

E(t) ≥ c6‖ξ‖2
H

β
K(Ω)

− c7, (4.3)

provided that ε0 is small enough and for some c6 > 0 (possibly very small). We now estimate the right
hand side of (4.1). Using (3.5), we obtain

‖A
α
2

Kθ‖2L2(Ω) ≥ λK,α‖θ‖2L2(Ω), (4.4)

− ε2(u, θ)L2(Ω) ≤ ε3

4λK,β
‖A

β
2

Ku‖2L2(Ω) + ε‖θ‖2L2(Ω), (4.5)

ε(g, u)L2(Ω) ≤ εμ

2λK,β
‖A

β
2

Ku‖2L2(Ω) + c8ε, (4.6)

where c8 = c8(μ, λK,β, ‖g‖L2(Ω)). We infer from (3.8), (4.1), (4.4), (4.5), (4.6) that

d

dt
E(t) + 2(λK,α − 2ε)‖θ‖2L2(Ω) + [

με

λK,β
− ε2

2λK,β
]‖A

β
2

Ku‖2L2(Ω)

−2ε2‖A
α
2

Ku‖2L2(Ω) ≤ 2(c1 + c8)ε,

which, for ε0 small enough, becomes

d

dt
E(t) + 2(λK,α − 2ε)‖θ‖2L2(Ω) +

με

2λK,β
‖A

β
2

Ku‖2L2(Ω) ≤ c9ε, (4.7)

where c9 = 2(c1 + c8). It is easy to see that λK,α − 2ε ≥ με
4λK,β

for ε0 small enough. We deduce from
(4.7) that for ε0 sufficiently small

d

dt
E(t) +

με

2λK,β
‖ξ‖2

H
β
K(Ω)

≤ c9ε.

Applying Lemma 4.1, it follows from (4.2) and (4.3) that there exists

t0 =
c7 + c5(1 + R6)

c9ε
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such that

E(ξ(t)) ≤ sup
z∈Hβ

K(Ω)

{
E(z) : μ‖z‖2

H
β
K(Ω)

≤ 4c9λK,β

}
, ∀t ≥ t0.

On account of (4.2) and (4.3), this implies the conclusion of Lemma 4.2.

Corollary 4.1. Given any R ≥ 0, there exists M1 = M1(R) and M2 =M2(R) such that if ‖ξ0‖Hβ
K(Ω) ≤

R then

‖SK(t)ξ0‖Hβ
K(Ω) ≤M1, ∀t ∈ R

+,

∞∫
0

‖A
α
2

Kut(τ)‖2L2(Ω)dτ ≤M2.

Proof. Let ε = 0 and integrating (4.1). We infer the results from (4.2), (4.3) and Lemma 4.2.

Remark 4.1. It follows from Lemma 4.2 and Corollary 4.1 that the set {ξ0 ∈ H
β
K(Ω) :

‖SK(t)ξ0‖Hβ
K(Ω) ≤M1(R0),∀t ∈ R

+} is a bounded absorbing set for {SK(t)}t≥0. Moreover, it is invari-
ant.

In light of [21, Remark 1, Remark 2] (see also [1, Lemma 1.2], [12, Lemma 3.2]), it follows from the
condition (F) that f admits the following decomposition

f = f0 + f1,

where f0 and f1 are continuous functions satisfying

|f0(s)| ≤ C(|s|+ |s|ρ), ∀s ∈ R, (4.8)

f0(s)s ≥ 0, ∀s ∈ R, (4.9)

|f1(s)| ≤ C(1 + |s|γ), γ < ρ, ∀s ∈ R, (4.10)

lim inf
|s|→∞

f1(s)

s
≥ −λK,β. (4.11)

We decompose the solution of (3.1) into the sum

u(t) = v(t) + w(t),

where v and w are the solutions to the following problems:⎧⎪⎪⎨⎪⎪⎩
vtt + Aα

Kvt + Aβ
Kv + f0(v) = 0 in Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = u1(x) in Ω,

(4.12)

and ⎧⎪⎪⎨⎪⎪⎩
wtt + Aα

Kwt + Aβ
Kw + f(u)− f0(v) = g in Ω× (0,∞),

u(x, 0) = 0 in Ω,

ut(x, 0) = 0 in Ω.

(4.13)

Denote

ξ(t) = (u(t), ut(t)), ξd(t) = (v(t), vt(t)), ξc(t) = (w(t), wt(t)).

We have the following important lemmas.
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Lemma 4.3. Given any R ≥ 0. Assume that ‖ξ0‖Hβ
K(Ω) ≤ R. There exist M3 = M3(R) ≥ 0 and

ν = ν(R) > 0 such that

‖ξd(t)‖Hβ
K(Ω) ≤M3e

−νt, ∀t ∈ R
+.

Proof. We argue as in the proof of Lemma 4.2, we get the differential inequality

d

dt
Ed(t) + 2(λK,α − 2ε)‖θd‖2L2(Ω) + ε‖A

β
2

Kv‖2L2(Ω) ≤ 0, (4.14)

for some ε0 small enough and

Ed(t) = ‖θd(t)‖2L2(Ω) + ‖A
β
2

Kv‖2L2(Ω) − ε‖A
α
2

Kv‖2L2(Ω) + �d(t), (4.15)

Ed(t) ≤ C(1 + ‖ξd‖6
H

β
K(Ω)

), (4.16)

Ed(t) ≥ C‖ξd‖2
H

β
K(Ω)

− C, (4.17)

θd(t) = vt(t) + εv(t),

�d(t) = �d(v(t)) = 2

∫
Ω

v(x,t)∫
0

f0(τ)dτdx.

Integrating (4.14) for ε = 0 and using (4.16), (4.17) give

sup
‖ξ0‖

H
β
K

(Ω)
≤R

sup
t∈R+

ξd(t)‖Hβ
K(Ω) <∞.

Hence, we get the uniform estimate

�d(t) ≤ C(‖v(t)‖2L2(Ω) + ‖v(t)‖ρ+1
Lρ+1(Ω)) ≤ κ‖A

β
2

Kv‖2L2(Ω),

for some κ = κ(R) ≥ 1 and all t ∈ R
+.

On the other hand, we have

1

2κ
‖A

β
2

Kv‖2L2(Ω) −
ε

2κ
‖Aα

2

Kv‖2L2(Ω) +
1

2κ
�d(t) =

1

2κ
Ed(t)− 1

2κ
‖θd(t)‖2L2(Ω)

≤ ‖A
β
2

Kv‖2L2(Ω).

Put this into (4.14) yields

d

dt
Ed(t) +

ε

2κ
Ed(t) + 2(λK,α − 2ε− ε

4κ
)‖θd‖2L2(Ω) ≤ 0.

Thus, we infer that

d

dt
Ed(t) + νEd(t) ≤ 0,

where ν = ε
2κ satisfying λK,α − 2ε − ε

4κ > 0 for ε0 small enough. By application of the Gronwall
inequality and using (4.16), (4.17), the proof is completed.

Corollary 4.2. If f1 ≡ 0 and g ≡ 0, then {SK(t)}t≥0 decay to zero. Thus the set {0} ⊂ H
β
K(Ω) is the

global attractor for {SK(t)}t≥0 on H
β
K(Ω).
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Proof. This result is a straightforward consequence of Lemma 4.3.

Lemma 4.4. Given any T ∈ R
+, there exists a compact set KT,β ⊂ H

β
K(Ω) such that⋃

ξ0∈B0

ξc(t) ∈ KT,β , ∀t ∈ [0, T ].

Proof. We deduce from Corollary 4.1, Remark 4.1 and Lemma 4.3 that

‖A
β
2

Ku‖2L2(Ω) + ‖A
β
2

Kv‖2L2(Ω) ≤ C, ∀t ∈ R
+. (4.18)

Choosing

σ ∈ (0,min{1
2
,
3ρ− 3γ + 2αρ

2βρ
}).

Taking the inner product (4.13) with Aσβ
K wt, we obtain

1

2

d

dt
‖ξc‖2

H
β
K,σ(Ω)

+ ‖A
α+σβ

2

K wt‖L2(Ω) = −(f(u)− f(v), Aσβ
K wt)L2(Ω)

−(f1(v), A
σβ
K wt)L2(Ω) + (g,Aσβ

K wt)L2(Ω). (4.19)

We now estimate the terms in the right hand side of (4.19)

(g,Aσβ
K wt)L2(Ω) ≤ ‖A

σβ−α
2

K g‖L2(Ω)‖A
α+σβ

2

K wt‖L2(Ω)

≤ C +
1

3
‖A

α+σβ
2

K wt‖2L2(Ω),

and it follows from (3.4), (4.10) and (4.18) that

−(f1(v), A
σβ
K wt)L2(Ω) ≤ C(1 + ‖v‖γ

L
6γ

3+2α−2σβ (Ω)
)‖Aσβ

K wt‖
L

6
3−2α+2σβ (Ω)

≤ C(1 + ‖A
β
2

Kv‖γL2(Ω))‖A
α+σβ

2

K wt‖L2(Ω)

≤ C +
1

3
‖A

α+σβ
2

K wt‖2L2(Ω).

Finally, we infer from (3.2), (3.4) and (4.18) that

− (f(u)− f(v), Aσβ
K wt)L2(Ω)

≤ c0
(
1 + ‖u‖ρ−1

L
3(ρ−1)
α+β (Ω)

+ ‖v‖ρ−1

L
3(ρ−1)
α+β (Ω)

)‖w‖
L

6
3−2(1+σ)β (Ω)

‖Aσβ
K wt‖

L
6

3−2α+2σβ (Ω)

≤ C
(
1 + ‖A

β
2

Ku‖ρ−1
L2(Ω) + ‖A

β
2

Kv‖ρ−1
L2(Ω)

)‖A (1+σ)β
2

K w‖L2(Ω)‖A
α+σβ

2

K wt‖L2(Ω)

≤ C‖ξc‖2
H

β
K,σ(Ω)

+
1

3
‖A

α+σβ
2

K wt‖2L2(Ω).

Combining the above estimates, we deduce from (4.19) that

d

dt
‖ξc‖2

H
β
K,σ(Ω)

≤ C‖ξc‖2
H

β
K,σ(Ω)

+ C.

Applying the Gronwall inequality for the last inequality and using H
β
K,σ(Ω) ↪→ H

β
K(Ω), we complete the

proof.

From Lemma 4.2, Lemma 4.3, Lemma 4.4 and [25, Chapter 1, Theorem 1.1], we get the main result.

Theorem 4.1. The semigroup {SK(t)}t≥0 possesses a connected global attractor AK on H
β
K(Ω).
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4.2. Regularity

In this subsection, we want to persue the smoothness of the global attractors when the nonlinearity is
more regular. More precisely, we require stronger assumptions as follows:

(Fbis) The function f ∈ C1(R), with f(0) = 0, satisfies the condition (F).

We see that the condition (Fbis) implies that

|f ′(s)| ≤ C(1 + |s|ρ−1), (4.20)

f ′(s) ≥ −�, (4.21)

for some � ≥ λK,β and all s ∈ R.

We now establish some estimates for the time derivatives of u.

Lemma 4.5. For every t > 0, we have the following inequality

min{t, 1}‖A
α
2

Kut‖2L2(Ω) +

t∫
0

min{s, 1}‖A
α−β
2

K utt(s)‖2L2(Ω)ds ≤ C(R0),

where R0 is determined in Lemma 4.2.

Proof. Multiply (3.1) by A
α−β
2

K utt in L2(Ω) to yield

d

dt
Λ1 + 2‖A

α−β
2

K utt‖2L2(Ω) = 2‖A
α
2

Kut‖2L2(Ω) + 2(f ′(u)ut, A
α−β
K ut)L2(Ω), (4.22)

where

Λ1 = ‖Aα−β
2

K ut‖2L2(Ω) + 2(A
α
2

Ku,A
α
2

Kut)L2(Ω)

+ 2(f(u), Aα−β
K ut)L2(Ω) − 2(g,Aα−β

K ut)L2(Ω).

Since α− β
2 <

α
2 <

β
2 and ρ < 3

3−2β , in view of Lemma 4.2, we infer that

1

2
‖Aα

2

Kut‖2L2(Ω) − C(R0) ≤ Λ1 ≤ C(R0)‖A
α
2

Kut‖2L2(Ω). (4.23)

We have

2(f ′(u)ut, A
α−β
K ut)L2(Ω) ≤ 2‖f ′(u)‖

L
3
2β (Ω)

‖ut‖
L

6
3−2α (Ω)

‖Aα−β
K ut‖

L
6

3+2α−4β (Ω)

≤ C(1 + ‖u‖ρ−1

L
3(ρ−1)

2β (Ω)

)‖A
α
2

Kut‖2L2(Ω)

≤ C(1 + ‖A
β
2

Ku‖ρ−1
L2(Ω))‖A

α
2

Kut‖2L2(Ω)

≤ C(R0)‖A
α
2

Kut‖2L2(Ω).
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Inserting this inequality into (4.22), we get

d

dt
Λ1 + 2‖A

α−β
2

K utt‖2L2(Ω) ≤ C(R0)‖A
α
2

Kut‖2L2(Ω). (4.24)

Assume first that t ∈ (0, 1]. Multiplying (4.24) by t and integrating over [0, t], we have

tΛ1(t) + 2

t∫
0

s‖A
α−β
2

K utt(s)‖2L2(Ω)ds ≤ C(R0)

t∫
0

‖Aα
2

Kut(s)‖2L2(Ω)ds+

t∫
0

Λ1(s)ds.

Using Lemma 4.2, Corollary 4.1 and (4.23), we deduce that

t

2
‖A

α
2

Kut‖2L2(Ω) + 2

t∫
0

s‖A
α−β
2

K utt(s)‖2L2(Ω)ds ≤ C(R0). (4.25)

In case of t > 1, we integrate (4.24) over [1, t]

Λ1(t) + 2

t∫
0

‖A
α−β
2

K utt(s)‖2L2(Ω)ds ≤ C(R0)

t∫
0

‖A
α
2

Kut(s)‖2L2(Ω)ds+ Λ1(1).

Using Lemma 4.2, Corollary 4.1 and (4.23) again, we deduce that

1

2
‖A

α
2

Kut‖2L2(Ω) + 2

t∫
0

‖A
α−β
2

K utt(s)‖2L2(Ω)ds ≤ C(R0). (4.26)

The conclusion follows from (4.25) and (4.26).

Lemma 4.6. For every t > 0, we have the following inequality

min{t2, 1}‖A
α−β
2

K utt‖2L2(Ω) ≤ C(R0).

Proof. Set q = ut and differentiate (3.1) with respect to time, we get

qtt + Aα
Kqt + Aβ

Kq + f ′(u)ut = 0.

Then, multiplying the above equation by A
α−β
2

K qt, we obtain

d

dt
Λ2 + 2‖Aα−β

2

K qt‖2L2(Ω) = −2(f ′(u)ut, A
α−β
2

K qt)L2(Ω), (4.27)

where

Λ2 = ‖A
α
2

Kq‖2L2(Ω) + ‖A
α−β
2

K qt‖2L2(Ω).

Using Lemma 4.2, Corollary 4.1 and Lemma 4.5, we have

t∫
0

min{s, 1}Λ2(s)ds ≤ C(R0). (4.28)
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In addition, we estimate the right hand side as

−2(f ′(u)ut, A
α−β
2

K qt)L2(Ω) ≤ C‖f ′(u)‖
L

6
2α+2β (Ω)

‖ut‖
L

6
3−2α (Ω)

‖A
α−β
2

K qt‖
L

6
3−2β (Ω)

≤ C(1 + ‖u‖ρ−1

L
6(ρ−1)
2α+2β (Ω)

)‖Aα
2

Kut‖L2(Ω)‖Aα−β
2

K qt‖L2(Ω)

≤ C(R0)‖A
α
2

Kut‖2L2(Ω) + 2‖Aα−β
2

K qt‖2L2(Ω).

Inserting this inequality into (4.27) yields the differential inequality

d

dt
Λ2 ≤ C(R0)‖A

α
2

Kut‖2L2(Ω). (4.29)

If t ∈ (0, 1], we multiply (4.29) by t2 and integrating over [0, t]. On account of Lemma 4.2, Corollary 4.1
and (4.28), we obtain

t2‖A
α−β
2

K qt‖2L2(Ω) ≤ C(R0). (4.30)

If t > 1, we integrate (4.29) over [1, t] to get

Λ2(t) ≤ C(R0)

t∫
1

‖A
α
2

Kut(s)‖2L2(Ω)ds+ Λ2(1) ≤ C(R0),

which in turn gives

‖A
α−β
2

K qt‖2L2(Ω) ≤ C(R0). (4.31)

Putting together (4.30) and (4.31), the proof is finished.

We now rewrite (3.1) as

Aα
Kut + Aβ

Ku+ f(u) = h, (4.32)

where h = g − utt. In view of Lemma 4.6,

sup
t>0

‖A
α−β
2

K h‖L2(Ω) ≤ C(R0). (4.33)

Remark 4.2. We can establish existence and continuous dependence results for (4.32) : For every u0 ∈
D(A

β
2

K) and h ∈ L∞([0,∞);D(A
α−β
2

K )), (4.32) possesses a unique solution u ∈ C([0,∞);D(A
β
2

K)) such
that u(0) = u0. Indeed, rewriting (4.32) as

ut + Aβ−α
K u+ A−α

K f(u) = A−α
K h.

Thanks to the works by C.G. Gal and M. Warma [16], we get the results.

We define

f̂(s) = f(s) + �s,

with � as in (4.21). Thus f̂ ′(s) ≥ 0 for every s ∈ R. Thus, we decompose u = v + w, where v and w
now are the solutions to the following equations{

Aα
Kvt + Aβ

Kv + f̂(u)− f̂(w) = 0,

v(x, 0) = u0(x),
(4.34)
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and {
Aα

Kwt + Aβ
Kw + f̂(w) = �u+ h,

w(x, 0) = 0.
(4.35)

We have the following important result.

Lemma 4.7. The solution u to (4.32) can be decomposed as u = v + w which satisfies

‖A
β
2

Kv‖L2(Ω) ≤ ‖A
β
2

Ku0‖L2(Ω)e
−Ct,

and

‖Aα
Kw‖L2(Ω) ≤ C(R0, �).

Proof. Multiplying (4.34) by Aβ−α
K u and from the monotonicity of f̂ we get

d

dt
‖A

β
2

Kv‖2L2(Ω) + 2‖Aβ−α
2

K v‖2L2(Ω) ≤ 0.

Since β − α
2 >

β
2 and applying the Gronwall inequality we deduce from the above inequality that

‖A
β
2

Kv‖L2(Ω) ≤ ‖A
β
2

Ku0‖L2(Ω)e
−Ct.

Next, multiplying (4.35) by Aα
Kw and from the nondecreasing of f̂ we get

d

dt
‖Aα

Kw‖2L2(Ω) + 2‖A
α+β
2

K w‖2L2(Ω)

≤ 2�(u,Aα
Kw)L2(Ω) + 2(h,Aα

Kw)L2(Ω)

≤ 2�‖A
α
2

Ku‖L2(Ω)‖A
α
2

Kw‖L2(Ω) + 2‖A
α−β
2

K h‖L2(Ω)‖A
α+β
2

K w‖L2(Ω)

≤ C(�2‖A
α
2

Ku‖2L2(Ω) + ‖A
α−β
2

K h‖2L2(Ω)) + ‖A
α+β
2

K w‖2L2(Ω).

Based on Lemma 4.2, Corollary 4.1, and (4.33), we have

d

dt
‖Aα

Kw‖2L2(Ω) + ‖A
α+β
2

K w‖2L2(Ω) ≤ C(R0, �).

Since α+β
2 > α, we can infer from the above inequality and the Gronwall inequality that

‖Aα
Kw‖L2(Ω) ≤ C(R0, �).

Now, it follows from Lemma 4.2, Lemma 4.5 and Lemma 4.7 that if all initial data ξ0 ∈ B0, we have
that

‖A
α
2

Kut‖L2(Ω) ≤ C(R0, �), ‖A
β
2

Kv‖L2(Ω) ≤ C(R0, �)e
−Ct, ‖Aα

Kw‖L2(Ω) ≤ C(R0, �),

for t large enough. Let R1 be the best constant C(R0, �) in the above inequality. Setting B1 as the ball of
D(Aα

K)×D(A
α
2

K) with radius R1

√
2, since D(Aα

K)×D(A
α
2

K) is a subspace of Hβ
K(Ω). We infer that

dist
H

β
K(Ω)(S(t)B0,B1) ≤ R1e

−Ct,

for t large enough and here dist
H

β
K(Ω) denotes the usual Hausdorff semidistance in H

β
K(Ω). In other words,

B1 is a compact absorbing set, and so by standard arguments, the semigroup {SK(t)}t≥0 possesses a
compact global attractor AK ⊂ B1. In brief, we have the following theorem.
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Theorem 4.2. The attractor AK of the semigroup {SK(t)}t≥0 onHβ
K(Ω) is a bounded subset ofD(Aα

K)×
D(A

α
2

K).

Remark 4.3. In fact, we believe that Theorem 4.1 and Theorem 4.2 still hold if α, β ∈ (0, 1); α = β

and K ∈ {D,E,R} by following the same approach as the works by Pata et. al. [21, 22]. In case of
non-uniqueness, the theory of the evolutionary system recently developed by Cheskidov, Foias, and Lu
in [8, 9, 10, 11, 15] seems suitable for studying these issues.
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