Advances in Pure and Applied Mathematics
2026, vol. 17, n° 1, 1-24 pages, DOI: 10.21494/ISTE.OP.2026.1391

Strongly damped wave equations with fractional
diffusions: Well-posedness and global attractors

ISTE OpenScience

Equations d’ondes fortement amorties avec diffusions fractionnaires

Le Tran Tinh

Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung, Dong Ve, Thanh Hoa, Vietnam
letrantinh@hdu.edu.vn

ABSTRACT. This paper is concerned with the nonlinear strongly damped wave equations involving the fractional Lapla-
cian and regional fractional Laplacian with various boundary conditions. We first prove the existence and uniqueness of
weak solutions using the compactness method and weak convergence techniques in Orlicz spaces. Then we study the
existence and regularity of global attractors of associated semigroups. The main novelty of the obtained results here is to
improve and extend the previous results in [6} 7, A.N. Carvalho and J.W. Cholewa] and [24} J. Shomberg].
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1. Introduction

In this paper, we will consider the strongly damped wave equations involving fractional diffusions with
various boundary conditions as follows:

(w4 (=A)%u + (—A)u+ f(u) =g in Qx(0,00),
u=0 on (R3\Q) x (0,00),
(1.1)
u(z,0) = up(x) in
Ln(,0) = wr () in 0,
and
(g + Aju + Agu+ f(u) =g in Qx (0,00),
u=70 on 0 x (0,00), (12)
u(z,0) = up(x) in
La(,0) = s () in 0
and
(un + Agus + AJu+ f(u) =g in Qx (0,00),
BN oN?72%U 4+ yqu = 0 on 0 x (0,00),
By gN? 2Py + y5u = 0 on 09 x (0,00), (1.3)
u(x,0) = ugp(x) in
L (,0) = s () in 0

where ) C R? is an arbitrary bounded open set with boundary 9¢). The nonlinearity f satisfies a dis-
sipativity condition (see Section 3 below). N'>~2%y and N'?~2%y are the fractional normal derivatives of
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the function u. By o and By s are normalized constants (see Theorem 2.2]below). v, and 74 are nonneg-
ative constants. (—A)® and (—A)? are the fractional Laplacian operators. A% and .Ag are the regional
fractional Laplacian operators.

The strongly damped wave equations appear in many relevant physical applications (see e.g. [[12, 22,
24])). They have been investigated quite extensively by several authors in recent years (see e.g. 3, 16} [7,
120113, 14, 21} 22, 24]), with particular regard to their asymptotics.

Recently, the nonlocal equations of fractional order have gained a lot of attention from the partial
differential equations research community. To the best of our knowledge, the strongly damped wave
equation with the fractional operator (—A)*u;, 0 < s < 1 (such powers may be defined through a
Fourier series) given by

g + (—A)°us + (=A)u+ f(u) =0,

was studied in [6]. A.N. Carvalho and J.W. Cholewa proved the global well-posedness results for
seld
of nonlinearity. In [7], they studied the local well-posedness of the above equation with f(u, u;) in place
of f(u). Latter, J. Shomberg [24] considered the following semilinear strongly damped wave equations

with fractional diffusion operators

1] and the existence of a compact global attractor for associated semigroup in different cases

g + (—A)%uy + (—A)ﬁu + f(u) =0,

where (—A)® and (—A)? are the fractional Laplace operators with extended homogeneous Dirichlet
boundary condition. The author proved the existence, uniqueness, global well-posedness, regularity of
solutions and relation between the solutions. Moreover, the analytic and Gevrey class properties of the
semigroup were discussed for certain parameters « and 3, and for certain exponents.

Fractional diffusion operators have been used to study anomalous diffusions that cannot be properly
described by integer-order partial differential equations. Importantly, fractional diffusion operators ap-
pear in the treatment of reaction diffusion equations [[16], from which our results are borrowed. In order
to make the paper as self-contained as possible, we start by introducing the fractional Laplacian. Let
0 < s < 1,0 C RY an arbitrary open set and let

u(z
£Y(Q) := {u: Q — R measurable, / %dm < 00}

For u € LY(R),r € RN and £ > 0, we write

(—A)u(z) = Cy. / uz) —uly)

2 |z — y|N+2s
{yeRN |ly—z[>c}
with the normalized constant C'y s given by
25 ( N+2
s2%°T(75%)

1.4
72(1—s) (9

N,s +—
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where I" denotes the usual Gamma function. The fractional Laplacian (—A)*u of the function u is defined
by

(—A)’u(x) := CnP.V. / %dy = lgii(r)l(—A)gu(x), reRY,
RN

provided that the limit exists.

We notice that in the whole space RY, using the Fourier transform, (—A)* can be defined as a pseudo-
differential operator with symbol |£|?. If one wishes to consider the fractional Laplace operator (—A)?
on open subsets 2 of RY it cannot be used on 2 automatically due to its nonlocal character. In order to
give a proper definition, we follow [18, 19, 28] in the following fashion. Let 2 be an arbitrary open set
in RY. For u € LY(Q),2 € Qand ¢ > 0, we let

fzsu(x) = Cns / %d%
{yeQ |y—a|>e}

and we define the operator A, as follows

o 0N w@) —uly) o e
ou(z) == CysP.V. / mdy = lglﬁ)l Ag u(z), © € Q,
Q

provided that the limit exists. We call the operator A¢, the regional fractional Laplacian.

The fractional Laplacian operator and the regional fractional Laplacian operators have important moti-
vations. In the context of physical motivation, for a point = € €2, the fractional Laplacian (—A)® accounts
for the interactions between z and y for all y € R\ {x}. Whereas, the regional fractional Laplacian A¢,
accounts for the interactions between = and y for all y € Q\{x}. They describe a particle jumping
from one point z € (2 to another point y € () with intensity proportional to W In the context of
probability, the fractional Laplacian operator (—A)® represents the infinitesimal generator of a symmet-
ric 2s-stable Lévy process and the fractional Laplacian (—A)® on a bounded domain €2 with extended
homogeneous Dirichlet boundary condition represents that particles are killed upon leaving the domain
(). Whereas, the regional fractional Laplacian A{, is considered as the fractional Laplacian (—A)* by
restricting its measure on 2.

The paper is organized as follows. In Section 2, we recall some intermediate results that will be used
to obtain our main results. In Section 3, we prove the existence and uniqueness of weak solutions to
the strongly damped wave equations involving fractional diffusions with various boundary conditions
(LI)-(L3). In Section 4, we prove the existence of global attractors in H%(Q) and their regularity.

2. Prelimilaries

In this section, we recall some intermediate results that will be used to obtain our main results.

Let Q C RY be an arbitrary bounded open set with boundary 9. We denote by D(2) the space of test
functions on (2. For s € (0, 1), we denote by

u(z) — u(y)?
W2(Q) == {u € L*(Q) : / | |§: 1 y|NSLy21| drxdy < oo}
Q0
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the fractional order Sobolev space endowed with the norm

Cns [ [ () — u(y)?

o 2 s

-y = | [ Ity + 52 [ o iy
Q

Q Q

We let
5,2
we2Q) =pE@)" .

We have the following result taken from [[17, Chapter 1] (see also [4}, Corollary 2.8 and Remark 2.3] and
[23]])

Theorem 2.1. Assume that Q C RY is a bounded domain with Lipschitz continuous boundary. For every
0 < s < 1, the spaces W**(Q) and W2(Q) coincide with equivalent norms.

Remark 2.1. In view of Theorem[2.1] to talk about well-defined traces (not necessarily null) of functions
in W#2(Q), it is not a restriction to assume that 3 < s < 1.
For advantages of using the method of bilinear Dirichlet forms, our framework is borrowed from [16,
28, 29](see also [26, 27]).
Let &g ; be the bilinear symmetric closed form with its domain
D(Eps) = {u € W*2(RY),u = 0 on RN\ Q}
and defined for u,v € D(Eg) by

€ o(u,0) = CNS// W)@ =v®) 400

|$ _ |N+25

RN RN
Let A$, be the closed linear selfadjoint operator on L*(Q) associated with g ; in the sense that
D(A%) == {u € D(€gs), (—A)°u e L2(Q)} :
Aju = (—A)*u.

We call A3, is said to be a realization of the fractional Laplace operator (—A)® on L?(Q)) with the
extended homogeneous Dirichlet boundary condition.

Definition 2.1. /29, Definition 2.5(a)] Let v € W*%(Q). We say that Aju € L*() if there exists
w € L?(Q) such that

Cn.s // |$ Y y(|11i’(f2>5_ U@))dxdy = /w(x)v(l’)df’?

Q

forall v € D(Q2), and hence for all v € W§’2(Q) by density. In that case, we write Aju = w.

Next, we introduce the bilinear symmetric closed form £p , with domain D(Ep ) = W *(Q) as
follows
CNS (U(:E) — U(?/)) s
Ep.s(u,v) // |$ e dxdy, Yu,v € W3 (Q).
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Let A% be the closed linear selfadjoint operator on L?(2) associated with £p s in the sense that
D(Ap) = {u e W), Agu € L2@) },
Apu = Aju.

In that case, A% is said to be a realization of the regional fractional Laplace operator A$, on L?(2) with
the Dirichlet boundary condition.

Before we introduce realizations of the regional fractional Laplace operator with fractional Neumann
and fractional Robin boundary conditions, respectively, let us first recall the following integration by
parts formula taken from [18, Theorem 3.3].

Theorem 2.2. Let % < s < 1land Q C RY be a bounded domain of class C*'. Setting
C3,(Q) == {u: u(z) = a(@)p(x)* " + b(z), YV € Q, for some a,b € C*(Q)},

where p(x) = dist(x,00), z € Q. Foru € C3,(Q) and z € 05), we define the fractional normal
derivative N'*~25u of the function u by

_ . du(z+1(2)t) o
2—2s _ 2-2s
N"%u(z) = ltlfgl = 7

where 7i(z) is the inner normal vector of O) at the point z € 0. Then for every u € C3,(Q) and
v € W52(Q), one has Aju € L*(Q), N?*u € L*(09Q), and

[rotois 52 [ [ A0
Q (2.1)

— BMS/UNZ_QSudU

o0

where the constant By s is determined by

ClsB CS lfN:L (22)
Cns 057 2& 2 CS fo cos?(0) sinV 2(0)do if N > 2, '
and
‘ Cls i 7 — 11728 — {max(r, 1)}172%
Cs = s(2s — 1) / 7228 ar,
0

and C' 4 is given by with N = 1.

Remark 2.2. We see from that By <N~ %5y plays the role as normal derivative d,u in the classical
Green formula for the Laplace operator (J,u := Vu - v is the normal derivative of u in direction of the
outer normal vector v).

Then, we recall the weak formulation on nonsmooth domains of a fractional normal derivative.
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Definition 2.2. /29, Definition 2.5(b)] Let % < 5 < 1and Q C RY be a bounded domain with Lipschitz
continuous boundary 0. Let v € W*2(Q) such that A4u € L*(Q). We say that u has a fractional
normal derivative in L*(0)) if there exists ¢ € L*(09) such that

/ (z)Adu(x)dr = CNS// |x_y<|z[<f2)s_v(y>)dxdy—/@Zﬂuda,

o0

forallv € W5%(Q) N C(QQ), and hence for all v € W*?(Q) by density and trace theorem. In that case,
we write By JN?7%u = 1) and 1) is called the fractional normal derivative of u.

We have Green’s type formula from Definition - and Definition 2.2] (see [29, Remark 2]) that

Q
— BMS/UNZ_QSudU
a0
holds for all v € W*2(Q) whenever u € W2(Q), Aju € L*(Q) and By JN? %u exists in L?(09).

Throughout this section, we assume that 2 C R” is a bounded domain with Lipschitz continuous
boundary 9 and 1 < s < 1. We consider the bilinear symmetric closed form £y ; on domain D(Ey 5) =
W*2(Q) given by

Ens(u,v) CNS // y)(v(z) - U<y))da:dy, Yu,v € W2(Q).

|LE _ |N+25

Let A}, is the closed linear self-adjoint operator associated with £y s in the sense that

D(A3,) == {u € W**(Q), Aju € L*(Q), N2~ %y exists in L*(9Q)
and N>72%y = 0 on 00},
Aju = Aju.
We call A%, a realization of the regional fractional Laplace operator A, on L*(2) with fractional Neu-
mann type boundary conditions.

Finally, we consider the bilinear symmetric closed form g s on domain D(Egs) = W*?(Q2) and
defined for u,v € W*2(Q)

C s —
Ers(u,v) . // izg)s U(y))dxdy—i—/%uvda.

o0

Let A% be the closed linear self-adjoint operator associated with £r  in the sense that
D(A%) = {u e W*2(Q), A,u € L*(2), N?*u exists in L*()
and By JN?72u + y5u = 0 on 0Q},
Apu = Adu,
where A?72%v is to be understood in the sense of Definition 2.2l and By s is the constant given in (2.2).

Hence, A% is said to be realization on L?(Q) of the operator .A$, with fractional Robin type boundary
conditions.
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Remark 2.3. The bilinear symmetric closed forms £p s, s and Eg ¢ are continuous and elliptic (see
[29, Proposition 2.1]). Since W*2(Q) = W§’2(Q), if0<s< %, then we have that Ep s = Ens = ERys
and hence A}, = A}, = A%,

3. Existence and uniqueness of weak solutions

We rewrite problems (I.1))-(I.3) in the unified form
U + AGuy —I—Af(u—i— flu)=g in Qx(0,00),
u(z,0) = up(x)

in €,
ug(,0) = u(x)

(3.1)
in €,
where A% and Ag(, K € {D, E,N, R}, are the linear self-adjoint operators introduced in Section 2.
To study problem (3.1]), we suppose that the following assumptions hold:

(D) The domain {2 and s satisfy the following conditions:

(i) If K = D, then (2 is an arbitrary bounded open set and 0 < s < 1,

(ii) If K € {N, R}, then () is a bounded set with Lipschitz continuous boundary and 1 < s < 1.
(F) Let f : R — R be a continuous function such that

_3
3-25°

(1) There exists a positive constant ¢y such that, for 1 < p <
1f(s1) — f(s2)] < colst — so|(1+ [s1|P7" + [so]P™1), Vs1,s0 € R.

3.2)
(i) There exists some positive constant Ax g (see (3.5)) and (3.6))) such that
lim inf @ > —AK 8, (3.3)
|s|—o0 S

(iii) If K = N, then f(s) — ns satisfies and (3.3)) for some 1 > |9}
(G) g € L*(Q).

P)0<Z<a<fB<l.

We identify L?(€2) with its dual space L*(€2)*, we consider the family of Hilbert spaces D(A[%(), 0<s<
1, whose inner product and norms are given by

(,),,

aiy = (Aiew, Af) gy and ul e = (1Al 2o
for u,v € D(AI%{) and K € {D, E, N, R}. We also recall the continuous embedding
D(AZ) = L% (Q), (3.4)
and the compact and dense injections
D(AZ) = D(AZ), Vs > r.
© 2026 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr
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It follows from [16, Theorem 2.5] that there exists the best Sobolev-Poincaré constant g,
(3.5)

Ak s(s,€2) > 0 such that
2 2 2
Ak sllull 72y < ||u||D(AI%<), Vu € D(A}), K € {D, E, R},
(3.6)

and if K = N, there is Ay s := Ay (s, ) > 0 such that

S

2

&

Ml <l ,

Setting

< (140)s as
Ko(Q):=D(Ag® ) x D(Ag ).
The space H%O(Q) is the Hilbert space equipped with the norm as

2 R 2 _ s
€115z, o) = HuHD(AfT“)S) + ||v||D(A§), V¢ = (u,v) € Hi ,(Q).
and the inner-product in Hj, ,(£2) as

(140)s (140)s s os

(€1 &m0 = (Ag® w, Ag? v)p2g) + (AZ vi, AR v2)12(0).-

Then
Hi () = Hi () = D(A%) x L¥(€).

The space H(€2) is also the Hilbert space whose square is given by

e = Nl s+ Nolifay, V6 = (uv) € Hie(9),

€]
and its inner-product in H7}(€?) is
(&1, 82)ms () = (Aju, ARv)r2) + (v1,v2) L2(0),

for every & = (u1,v1) and & = (ug, v2) in Hj (£2).
We define the linear unbounded operator Ag, : D(Ag,) C H%(Q) — H%(Q) given by

0o -1
Ap A%

Y

Agy =

—v
A (AR u+ )

0 —
Al Ag

wonlif =k ] L)

for all (u,v) € D(Ag.q).
The adjoint of Ag , is determined as follows. The proof is calculation similar to [7, Proposition 1] (see

also [2, Lemma 3.1]). We omit it here
Proposition 3.1. The adjoint of Ag , is the operator A  defined by, for any 0 < o, < 1,

0 1
N Aﬁ Ac
K K
Page |18

Y

A;a =

© 2026 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr



Since Ag o = AZTa’ then Ag , is closed (see also [24, Proposition 2.3]). Moreover, the operator —Ag ,,
is dissipative on H () because, for any & = (u,v) in H%(Q),

(=Asag, &) = —[vIl} (3.7)

D(AE)
We define the functional F : ]H[f((Q) — ]H[f((Q) as

0

70 =10

] . VE = (u,v) € HY(Q).

We have the following proposition and its proof is similar to [24, Proposition 2.8]. We skip it here
Proposition 3.2. Assume the conditions (F) and (P) hold. The functional F is locally Lipschitz continu-

ous.

We now return to the nonlinearity and give some important estimates. It follows from the condition (F)
8
that there exist 1 € (0, Ag g], c1 = c1(f,|2]) > 0and c3 = c2(f, |€2]) > 0 such that, forall w € D(A}),

() Wiy 2 ~(1 = 7o)l 4 —e (3:8)
K.B D(AR)
and
1
/F(u)dm ¢ T P (3.9)
20 AksT DAR)
Q
where F'(s) = [, f(7)dr. Moreover, there exists C' > 0 such that for all s € R,
[f(s)] < O+ s]"). (3.10)
Hence, if u € LPT1(Q), there exists c3 = c3(co, f, [2]) such that
[ Fide < 1+ ullih ), a.11)
Q

and if u € L?°(Q), there exists ¢4 = c4(cg, f, |©2]) such that

1 (w)l[72(0y < ea(l+ ([l o) (3.12)
We define
G:= m ., Vg € L*(Q).

We can now study the system under the abstract form in H%(Q) as

{&+Aﬁ,a§+?(€)=9 in Qx(0,00), (3.13)

£(x,0) = &o(x) in €,
where ) = (ug, uy) € H%(Q)
We now give the definition of weak solutions.
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Definition 3.1. A weak solution to problem 3.13) on [0,T] is a map § = (u,u) € L>(0,T; H%(Q))
satisfying £(0) = &y almost everywhere and

d
<%£(t>7ﬁ>Hf{(Q) + <£(t>>A2,a19>Hf<(Q) + <F(5>719>Hf<(9) = <g; 79>H§<(Q); (3.14)

holds for all test functions ¥ = (p,v) € D(A} ) and for a.e. t € (0,T).
The map & = (u, ut) is a global weak solution if it is a weak solution on on [0, T), for every T > 0.

Theorem 3.1. Let § = (ug,u1) € H%(Q) be given. Assume (D) (F), (G), and (P) hold. Then problem
(B.13) has a unique global weak solution £ = (u, uy) in sense of Definition3.1) Moreover, for any T > 0,
the following regularity satisfies

u € L2(0,T; D(AZ)). (3.15)
Proof. i) Existence. Since the operators A% and Ag{ are positive and self-adjoint, the operator Ag ,

possesses compact resolvent on ]H[%(Q), hence admitting an eigenbasis in H%(Q) ([20, Theorem 3.1(a)]).
Let {U}>, C H%(Q) be eigenfunctions satisfying

AgoW; =AU, i=1.2 -

We know by spectral theory that the eigenvalues A; are nonnegative. Moreover, 0 is an eigenvalue of
Ag o for K = N and is not an eigenvalue of Ag, for K € {D, E, R}. Thanks to [16, Theorem 2.5], the
components of every W; = (9;, ¢;), 1 = 1,2, - - -, satisfy

(01, 64) € (D(Ag) NL*()) x (D(Af) N L*(9)).
Moreover, {0;}52, can be an orthogonal basis in W[ﬁ(z(ﬂ) and {¢;}5°, can be an orthonormal basis in
L?(92). Define the subspaces
X, = span{ Wy, ¥y, -+, ¥, } and Xy := | J X,
n=1

By construction, X, is dense in D(Ag ). For each integer n > 1, we consider the approximate solution
to (3.13) in the form

n(t) = ZAj(t)‘I’j = (Z Aj(t)Qi,ZA;(t)%),

where A;(t) are gotten from solving the following problem
d

{<E£n(t>7 \I}j>Hf<(Q) + <£n(t>7A2,a\I}j>H?<(Q) + (PuF (&), \Ilj>H§<(Q) = (G, \I}j>H?<(Q),
for j = 1,2,---,n, and where &y, = P,&y; P, is the n-dimensional projection of I.?(Q2) onto X,,. Since

f is the continuous function, we apply Cauchy-Peano theorem for ODEs (3.16) to find that there exists
T, > 0 such that the unique solutions A;(¢) of (3.16) belong to C*([0,7;,]) in the classical sense for

(3.16)

j=1,2--- nandallt € [0,7,]. We now prove that the approximate solutions are global for every
n > 1. To do this, multiplying by A;(¢) in (3.16) and summing from j = 1 to n, we get

1d 2 *

5%”571“]1{?{(9) + <£naAﬁ,a£n>Hf{(Q) + <Pnf(€n>7£n>H§((Q) = <g75n>H§((Q)- (3~17)
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It follows form that

<€naAE,a€n>Hf{(Q) = <A67a£n7£n>H§<(Q) = ||unt||2D(AI%()7 (3.13)
dun
where u,; = 7~
We have

<Pnf(£n)7£n>Hf((Q) = <F(€ ) n£n>H5( < (571) £n>HB
(f (un), Unt)L?(Q)
%(F(un>,1)L2(Q). (3.19)

We also have

d

<g7§n>H§<(9) = (g,unt)L2(Q) = a(gaun)LQ(Q)- (3.20)

Combining (3.17)-(3.20) yields the differential identity

d 2 2
7 1681 o)+ 2(F (). Dy — 200, w) ) + 2l g = 0. @21

K

Integrating on the interval [0, t], where ¢ < T,,, leads

2 2
€)1 ) + 2(F (un(t)), 1) 2@y — 29, tn (1)) 2y + 2 / ()2, 347

- ||€n(0>||§ﬂ§((g) + Q(F(un(o))7 1)LQ(Q) - 2(97 Un(o))LQ(Q)- (3.22)
It follows from the Cauchy inequality, (3.3), (3.6), (3.9), and that

1_
%Hm)n <2 / 642y 7 + 260(0) 25 ) + 2

4 201 4 un(0 ) + Cle Amngniz(m
<D / 60N oy + 2Nl g + 2

+2c3(1+ [luol”™ 5 ) + C(e, 1, Ak 9) 9l 720, (3.23)
D(AZ)

K

]
where the last inequality follows from the embedding D(AZ) < LF*1(Q) when1 < p < 3 5 and ¢ is
small enough.

Using the Gronwall integral inequality, we deduce from (3.23)) that

22k BAK 0T

160 (0)11%2 (0 < ClS0llz (0> €2, €3)e™ #=4T (3.24)

Since the right hand side of (3.24)) is independent of n and ¢, we deduce T}, = +oo, for every n > 1, i.e.,
the approximate solutions are unique global in time. Furthermore, we obtain the following estimates for
any given 0 < 7" < +o0,

{&,} is uniformly bounded in L>(0, T} H%(Q)) (3.25)

© 2026 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr Page |11



8
{uy,} is uniformly bounded in L>°(0,T; D(A})). (3.26)

{4,,;} is uniformly bounded in L>°(0, T’; L*(2)). (3.27)
Since D(AI%) — L?*(Q)when1 < p < ﬁ, it follows from and (3.20) that

{f(u,)} is uniformly bounded in L?((0,7") x ),
for some ¢ > 1. Moreover, we deduce from (3.10)) that

esssup || (un() 111y < esssup CL + funllf, )

te(0,T) te(0,7)
< C(1 + esssup fum? , ).
te(0,T) D(AZ)
Hence,
{f(uy,)} is uniformly bounded in L>(0, T; L'(£2)). (3.28)

From the uniform bounds (3.23), (3.26), (3.27) and using Alaoglu’s Theorem (cf. e.g., [23, Theorem
4.18]), there exist subsequence of {&,,} (we label the same) and functions

€ € L0, T; Hy(Q)), (3.29)

we L%(0,T; D(AL)). (3.30)

u € L0, T; L*(Q2)), (3.31)
such that

£, —* €in L0, T; HL(Q)),

]
u, =" win L>=(0,T;D(A})),

Ups —* 1z in L®(0,T; L2(K2)).

8
Since D(AZ) — L*(Q) is compact for any 3 € (0, 1), we use the Aubin-Lions-Simon compactness

lemma (see e.g. [3]) to deduce the following embedding is compact
{ue L2(0,T; D(AL)) : u € L*((0,T) x Q)} — L2((0,T) x Q).
Thus,
wu, — u strongly in L*((0,T) x Q), (3.32)

and deduce that u, — wu a.e. in 7. Because of the continuity of f, we infer from (3.32) that, up to
subsequences, (by repeating the standard argument as in [24, Theorem 3.5, p.1329])

fun) — f(uw)in L2((0,T) x Q).
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Hence,
P, F(u,) — F(u) in L*((0,T) x Q).

Using convergence properties above allow us to pass the limit in (3.16)) in order to recover via
standard density arguments. Moreover, repeating the standard argument as in [23| p. 225], we get £(0) =
&o and this implies that £ is a weak solution to problem (3.13)).

ii) Additional regularity. In (3.14), we take ¥ = (unt, unt), we get

1d 9 9
——{|lu, + |y, + 2(F(uy), 1 —2(g,un,
th{H t||L2(Q) | ||D(Alg<) (£ (un) )L?(Q) (g )L?(Q)}
Hllunll? o+ [|wne? =0. 3.33
el g, + ol e (3.33)

Integrating (3.33)) over (0, t) leads to the identity

||Unt(t)||i2(9) + [lun(t) gt 2(F(un(t)), 1) 2y — 2(9, un(t)) r2(0)

I?
D(A2)

t t
+2/uns2ads+2/uns2 ds
[ Vel gy802 [ Vel g

= [[une(0)][72(0 + lun(O)* 4
D 2

K

+ 2(F(un(0)), 1) r200) — 2(9, un(0)) £2(0)- (3.34)
I2) a
Since D(A}) < D(AZ), it follows from (3.9), (3.11) and (3.34)) that
{un¢} is uniformly bounded in L*(0, T; D(A;%())

Thus, the additional regularity property (3.13]) follows.

iii) Uniqueness and continuous dependence on the initial data. As usual, we consider any two weak
solutions & = (uq,u1¢) and & = (ug, ug) of (3.13) with initial data &yy, oo € H%(Q), respectively. We
infer that £(t) = &1(t) — &»(t) satisfies

{gt +Apal +F(E) = F(&) =0 in Qx(0,00), 535)
§(,0) = &o1(x) — Eo2() in Q. :
It follows from Proposition [3.2 that

(F(E) = F(&), oy < CUENgz 0 TIEN g (3.36)

Taking inner-product (3.33) with &, and using (3.7), (3.36)) yields

d

Applying the Gronwall inequality, we infer from the last inequality that the solution is uniqueness and
continuous dependence with respect to the initial data. ]
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4. Global attractors and their regularity

4.1. Existence of global attractors

Thanks to Theorem [3.1], for each K € {D, E, N, R}, we can define a strongly continuous (nonlinear)
semigroup Sx (1) : H%(Q) > ]H[f((Q) associated to problem (3.1)) as follows:

Sk ()€ := &£(t) = (u(t), wi (1)),
where (1) is the unique global weak solution of with the initial datum &.

We will see that in case of K = N/, the analysis may be more complicated, and we may need stronger
conditions to obtain a result as in Lemma [4.2] Hence, we only consider K € {D, E, R} in the sequel.
We will prove that the semigroup Sx () has a global attractor Ax on H%(Q) We also use C' to denote
various positive constants whose values may change with each appearance.

We first recall the following technical lemma. Its proof can be found, for instance, in [3, Lemma 2.7]

Lemma 4.1. Let X ba a Banach space, and let U C C(R*, X). Let E : X — R bbe a function such
that

sup E(E(t)) > —m and E(£(0)) < M,

teR+

for some m, M > 0 and every £ € U. In addition, assume that for every ¢ € U the function E(£(t)) is
continuous differentiable, and satisfies the differential inequality

%E(é(t)) +olle@ < .

for some 6 > 0 and ¢ > 0, both independent of & € U. Then

B(E() < sup () 8l < 20}, we > "2
zeX

We now show that { Sk (t) }+>0 has a bounded absorbing set 5, C H%(Q)

Lemma 4.2. Assume that ||€0||Hf( @ < R forany given R > 0. There exist a constant Ry > 0 and
to = to(R) such that

||SK(t)§0||H?<(Q) < RO, vt > to.
Consequently, the set
Bo = {z € Hg(Q) : |llgg (o) < Ro}

is a bounded absorbing set for { Sk (t) }1>0 on H%(Q)

Proof. We consider the functional
u(x,t)

I(t) = S(u(t)) = 2 / / F(r)drdz.

Q 0
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O(t) = wy(t) + eu(t)
for some € € [0,¢0] C [0, 1]. Taking inner product with 6 yields

1d a
§EE( )+ (142 0|72 + €||A ullF2i) — X lARull 720
= 5||9||L2(Q) — &*(u, 0)r2) +e(g,u)r2) — e(f(u),u)r2(0), 4.1)

where the energy functional E is defined as
B a
E(t) = E(E(1) = 10()|I22(0) + | AfullT2) — ell AR ullz2 o)
+3(t) — 2(g, u(t)) r2(0)-
Using (3.11)), we find the bound of E from above

E(t) < es(1+ (1€l q)): (4.2)
On the other hand, using (3.9), we get the bound of F from below
> 2 — :
E(t) 2 coll€llgs (o) — 1 (4.3)

provided that ¢ 1s small enough and for some cg > 0 (possibly very small). We now estimate the right
hand side of (4.1)). Using (3.5)), we obtain

1A%0130) > ArcallflfFz (4.4)
3
—¥Wﬂnmns4 m4um2 )+ elOlz20) (4.5)
e(g, w2 < 57— 2 ||A2 720y + cse, (4.6)
where ¢s = cs(1, Ak g, ||g||L2(Q))- We infer from (3.8), @.1), @.4), @.5), (@.6) that
d 9 HE g2
7 E0 + 2000 = 29)0l|z2) + [)\Kﬁ by ]||A ullZ @)

—2e2|| A2 ullZ20) <2(Cl+68)

which, for €5 small enough, becomes

d

th( )+ 2k — 25)||9||%2(Q) 2/\ ||A u||L2 < cye, 4.7)
where cg = 2(¢; + cg). It is easy to see that A\x o, — 26 > +— for go small enough. We deduce from
that for ¢, sufficiently small

d

HE 2
e —— <
a? 2)\K7B||£||H§<(Q) = o

Applying Lemma 4.1}, it follows from and that there exists

cr + c5(1 + RY)
CoE

to =
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such that

E(@®) < sup {E(2) :,u||z||%15 @ <degrx g}, V> 1.
2€HP () K

On account of and (@.3), this implies the conclusion of Lemma[4.2]

Corollary 4.1. Given any R > 0, there exists My = M1(R) and My = Ms(R) such that if ||§0||H§{(Q) <

R then
ISk ()€olle o) < M1, VYt E€RT,

[ 14k agyr < 10

Proof. Let ¢ = 0 and integrating (4.1)). We infer the results from 4.2)), and Lemma 4.2l

[

[

Remark 4.1. It follows from Lemma B2 and Corollary B that the set {& € HY(Q)
||SK(t>€O||H?<(Q) < Mi(Ryp),Vt € R} is a bounded absorbing set for { Sk (t) }+>0. Moreover, it is invari-

ant.

In light of [21, Remark 1, Remark 2] (see also [1, Lemma 1.2], [12, Lemma 3.2]), it follows from the

condition (F) that f admits the following decomposition

f:f0+f17

where fy and f; are continuous functions satisfying
[fo(s)] < Cls| + [s]”), Vs €R,
fO(S)S Z 07 Vs € Ra
[fi(s) < CA+s]7), v<p, Vs eR,
lim inf h(s)

|s]—o0 S

We decompose the solution of into the sum
u(t) = v(t) +w(t),

> =K 3

where v and w are the solutions to the following problems:

(
vy + A%vy —I—A?{v—I—fo(v) =0 in Qx(0,00),

u(z,0) = ugp(x) in Q,
\ut(a;, 0) = ui(x) in
and
(wtt + A% w; + Af(w + f(u) — fo(v) =g in Qx(0,00),
q u(z,0) =0 in €
| ue(z,0) =0 in Q.
Denote

§(t) = (ut), us(t)), &a(t) = (v(t),v:(t)), &c(t) = (w(t), wi(t)).

We have the following important lemmas.
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Lemma 4.3. Given any R > 0. Assume that ||£0||H§((Q) < R. There exist Ms = M3(R) > 0 and
v =v(R) > 0 such that

1€ lggs () < Mse™, ¥t €RT.

Proof. We argue as in the proof of Lemma we get the differential inequality

d
%Ed( )+ 2(Ak.0 — 26)[|0al 72y + 5||A vl 720y <0, (4.14)
for some ¢y small enough and
B
Eqt) = 10a(t) 132(0) + 14701 320) — ellAZ0]220) + Sal®), (4.15)
6
Ey(t) < C(1+ ||€d||H§<(Q)), (4.16)
Ea(t) = Cl&llgs ) — C- (4.17)

W
<
I
W

[sH
=
Il

2 [ [ sryards.

Q 0

Integrating (#.14)) for ¢ = 0 and using @.16), (@.17) give

sup  sup §d(t)||H?<(Q) < 00.

+
[€ollys ) <P 1ER

Hence, we get the uniform estimate

Sa(t) < Clo@)[72) + 0O q)) < Rl A% V1)
for some k = k(R) > 1 and all t € RT.

On the other hand, we have
1 - € a o 1 1 1 9
ﬂ”Af(UHL?(Q) - ﬂHAf(UHL?(Q) + %%d(t) = ﬂEd(t) - ﬂ”ed(t)np(g)

5012
< ||AKU||L2(Q)

Put this into (4.14) yields

d € € 9
EEd( ) + ﬂEd(t) +2(Ak,0 — 26 — E)Hednp(m < 0.

Thus, we infer that

Bt + vEa(t) <0,

dt
where v = o satisfying Ag o — 26 — ;= > 0 for g9 small enough. By application of the Gronwall
inequality and using (4.16), , the proof is completed. l

Corollary 4.2. If f; = 0 and g = 0, then {Sk(t) }+>0 decay to zero. Thus the set {0} C ]H[%(Q) is the
global attractor for { Sk (t) }1>0 on H%(Q)
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Proof. This result is a straightforward consequence of Lemma ]

Lemma 4.4. Given any T € R, there exists a compact set Kr,3 C H%(Q) such that

| &(t) € Krp, VEe(0,T].

&o€Bo

Proof. We deduce from Corollary Remark 4.1] and Lemma (4.3 that
8 8
[AZullZ2i) + ARV 2 < C, Vi € RF. (4.18)
Choosing

1 3p— 37+2ap})
28p '

Taking the inner product with Agf wy, we obtain

€ (0, mm{

atos i
o TIAE" willz@) = —(f(uw) = F(), A% wy) 120

~(f1(0), A we) 120y + (9, AL w0 120 (4.19)
We now estimate the terms in the right hand side of

Sz,

gb—a
(9. AP wi)r20) < A7 glleolAk® willrao)
Loyt o
<C+ §||AK w12y
and it follows from (3.4)), (4.10) and (4.18)) that
~(f1(0): AFwe) p() < (1 + ||U||Z 6y AT w,|

K 6
SF20-205 () L3-2a+205 (Q)

8
C(1+ AR ol oo AR willizqe)
Lojedes
<C+ §||AK we|72 (0
Finally, we infer from (3.2)), and that
— (f(u) = f(v), A“ﬂwmm

p— p— of
< co (14 Jlull”% s 1)( )+||v|| s(p1) Q))||w||Lm [ A% well Rttt
(ta)8 a+oB
C(1+||A ullz2 +||A vl|7s )||A w2 |Ag® willrz(e)

+oB
< C||§c||%§<’g(m + §||AK2 wt||L2(Q)
Combining the above estimates, we deduce from (4.19)) that

d
%H&H%E{,a(ﬁ) S CH&H%QU(Q) +C.

Applying the Gronwall inequality for the last inequality and using H%U(Q) — ]H[f((Q), we complete the
proof. ]

From Lemma Lemmal4.3] Lemma and [25] Chapter 1, Theorem 1.1], we get the main result.

Theorem 4.1. The semigroup {Sk (t)}+>0 possesses a connected global attractor Ax on H%(Q)
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4.2. Regularity

In this subsection, we want to persue the smoothness of the global attractors when the nonlinearity is
more regular. More precisely, we require stronger assumptions as follows:

(Fbis) The function f € C1(R), with f(0) = 0, satisfies the condition (F).

We see that the condition (Fbis) implies that

/()]
f'(s)

for some ¢ > Ak gandall s € R.

145|771, (4.20)

< O
> —/, 4.21)

We now establish some estimates for the time derivatives of w.

Lemma 4.5. For everyt > 0, we have the following inequality
o . a=p
min{t, THAF ey + [ min{s, 1A ue(s) s < C(Ro)
where Ry is determined in Lemma

ap
Proof. Multiply by A7 uy in L*(Q) to yield

d .
th1+2||AK utt||L2 — 2||AZ il 32 + 20F (wur, A% ur) p2(q), (4.22)

where
Ay = ||AY Ut||L2 + 2(AZu, Afus) 2o
+2(f(u), Ay ﬁut)LQ( ) — 2(g, A% ) 2.

Since a — é <5<5 and p < in view of Lemma 4.2l we infer that

3= 25’
1 a a
§||A12<“t||%2(9) — C(Ry) < Ay < C(Ro)l| A uel|72 (0 (4.23)
We have
200 ), A5 )y < 2, g el 145

<O+ ||u||p3<p o ARl 72
2P (Q)

6
L3+2a=15 (Q)

_C(1+||A ullFaa) AR Ut||%2(m
= C(RO)||AK“t||L2(Q)
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Inserting this inequality into , we get

d as s
%Al +2[[ A7 w20y < C(Ro)|AZuel 720

Assume first that ¢ € (0, 1]. Multiplying (4.24) by ¢ and integrating over [0, ¢], we have

t

FA() + 2 / SI1ARE a(3) 2oy ds < C(Ro) / [AE s (5)]20ls +

0
Using Lemma Corollary 4.1 and (4.23)), we deduce that

t
t a a8
Sl F il +2 [ 1A welo)ayds < C(Ro).
0

In case of t > 1, we integrate over [1,¢]

Ait) +2 / 457 ()] oy < C(Ro) / | A5 ua(s) 1320y ds + Aa(1).

Using Lemma 4.2 Corollary 4.1l and (4.23)) again, we deduce that

1, 2 a8
MGl +2 [ 147 wa(s)|Baads < C(R).

The conclusion follows from and (4.26)).

Lemma 4.6. For everyt > 0, we have the following inequality

a—f
min{t?, 1} A7 usl|720) < C(Ro).

Proof. Set ¢ = u; and differentiate (3.1)) with respect to time, we get

q + Ak qr + Af(q + f'(u)uy = 0.

a=p
Then, multiplying the above equation by A,° ¢, we obtain
d , ap
S+ 2 A R alEagey = —2F (@, A @)z
where

a=8
Ay = ||AE 72 + 1AE @ill720)

Using Lemma Corollary 4.1l and Lemma we have

/min{s, 1}As(s)ds < C(Ry).
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In addition, we estimate the right hand side as

=2 (Wue, A ) rx@) < CIF @I gy o el o ||AK Qt||

<C(1+ ||u||[;g&p 1) )@ )||AI2{ut||L2(Q)||AK 2qt||L2(Q)

32 ()

< C(Ro)| Afwill3aqe) + 201 4% 61t||L2

Inserting this inequality into yields the differential inequality

d o
s < C(Ro) | AR ut]|72()- (4.29)

If t € (0, 1], we multiply (#.29) by #? and integrating over [0, ¢]. On account of Lemma 4.2}, Corollary 4.T]
and (4.28)), we obtain

ap
PlA alliz@ < C(Ro). (4.30)
If t > 1, we integrate over [1, ] to get

A ( < C Ro /”AKut ||L2 dS+A2( ) < C(Ro),

which in turn gives

a=p
14K a2y < C(Ro). (4.31)
Putting together and (4.31)), the proof is finished. n

We now rewrite as
Gut + Af(u + f(u) = h, (4.32)
where h = g — uy. In view of Lemma [4.6]

sup||A "Bl 20y < C(Ro). (4.33)

Remark 4.2. We can establish existence and continuous dependence results for (4.32) : For every uy €

8 a—p s
D(A})and h € L*>([0,00); D(A,? )), @.32) possesses a unique solution v € C([0, 00); D(A})) such
that u(0) = wug. Indeed, rewriting as

up + AV 4+ AL f(u) = AR h.
Thanks to the works by C.G. Gal and M. Warma [16]], we get the results.

We define
fs) = f(s) + L,
with ¢ as in (4.21). Thus ]?’(s) > 0 for every s € R. Thus, we decompose u = v + w, where v and w
now are the solutions to the following equations
{Af;(vt + Ao+ flu) = flw) =0,

4.34
v(z,0) = ug(x), ( )
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and

A% wy + Aiw + f(w) = lu+h, 435)
w(z,0) = 0. .
We have the following important result.
Lemma 4.7. The solution u to (4.32)) can be decomposed as v = v + w which satisfies
5 3 —ct
Azl 2@ < [[ARuollL2@e ",
and
A5l 20y < C(Ro, 0).
Proof. Multiplying by Af{au and from the monotonicity of f we get
d
Since ﬂ —-5>5 and applying the Gronwall inequality we deduce from the above inequality that
||A]§(U||L2(Q) < ||AI§(UO||L2(Q)€_Ct-
Next, multiplying by A%w and from the nondecreasing of f we get
d
_||A wHL? + 2||AK w||L2
< 20(u, AZw) 2(q) + 2(h, Aw) 2 Q)
at8
< 20| Aful g2y | A7 w||L2 +2] A h||L2 ol A" w2
< (| Afulla) + 147 hI|Lz )+ ||AKTw||%z(Q)
Based on Lemma 4.2 Corollary 4.1}, and (4.33)), we have
d . o at
EHAK?UH%%Q) + A w||L2 < C(Ro, 0).
Since # > «, we can infer from the above inequality and the Gronwall inequality that
[Agwl|r20) < C(Ro, €).
m

Now, it follows from Lemma Lemma and Lemma that if all initial data &, € B, we have
that

| Al 20y < C(Ro, 0), ||A Vllzx) < C(Ro, )e™ ", || Agwl|12(0) < C(Ro. ),

for ¢ large enough Let Ry be the best constant C'( Ry, ¢) in the above inequality. Setting 3, as the ball of
D(A%) x D(A ) with radius R;v/2, since D(A) x D(A ) is a subspace of H 1 (£2). We infer that

dist (S(t)Bo,Bl) < Rle* ,

HY ()

for ¢ large enough and here distH/Ia{ @ denotes the usual Hausdorff semidistance in ]H[% (€2). In other words,
B, is a compact absorbing set, and so by standard arguments, the semigroup { Sk (t)}+>0 possesses a
compact global attractor Ax C B;. In brief, we have the following theorem.
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Theorem 4.2. The attractor Ak of the semigroup { Sk (t) }1>0 on Hf( () is a bounded subset of D( A%, ) x
D(AZ).

Remark 4.3. In fact, we believe that Theorem (4.1l and Theorem [4.2] still hold if o, 5 € (0,1); a =
and K € {D, E, R} by following the same approach as the works by Pata et. al. [21}, 22]. In case of
non-uniqueness, the theory of the evolutionary system recently developed by Cheskidov, Foias, and Lu
in [8, 9, (10, [11}, [15] seems suitable for studying these issues.
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