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1. Introduction and preliminaries

The concept of almost periodicity was introduced by Danish mathematician H. Bohr around 1924-1926
and later generalized by many other authors (cf. [13], [21], [24], [35] and [40] for more details on the
subject). Let I = R or I = [0,∞), and let f : I → X be continuous. Given ε > 0, we call τ > 0 an
ε-period for f(·) if and only if ‖f(t+ τ)− f(t)‖ ≤ ε, t ∈ I. The set consisting of all ε-periods for f(·)
is denoted by ϑ(f, ε). We say that f(·) is almost periodic if and only if for each ε > 0 the set ϑ(f, ε) is
relatively dense in I, which means that there exists l > 0 such that any subinterval of I of length l meets
ϑ(f, ε).

Let f : R → X be continuous. Then we say that f(·) is almost automorphic if and only if for every
real sequence (bn) there exist a subsequence (an) of (bn) and a map g : R → X such that

lim
n→∞ f

(
t+ an

)
= g(t) and lim

n→∞ g
(
t− an

)
= f(t), (1.1)

pointwise for t ∈ R. If this is the case, then f(·) and g(·) are bounded but the limit function g(·) is
not necessarily continuous on R. If the convergence of limits appearing in (1.1) is uniform on compact
subsets of R, then we say that f(·) is compactly almost automorphic. By Bochner’s criterion, any almost
periodic function has to be compactly almost automorphic; the converse statement is not true, how-
ever ([13]). Let us also recall the well known result of P. Bender (the doctoral dissertation, Iowa State
University, 1966) which states that an almost automorphic function f : R → X is compactly almost
automorphic if and only if f(·) is uniformly continuous.

The notion of Stepanov almost periodicity and the notion of Stepanov almost automorphy have been
investigated in many mathematical papers by now; see [24]-[25] and references quoted therein for more
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details about the subject. Assume 1 ≤ p < ∞, l > 0 and f, g ∈ Lp
loc(I : X), where I = R or

I = [0,∞). Define the Stepanov metric by

Dp
Sl

[
f(·), g(·)] := sup

x∈I

[
1

l

x+l∫
x

∥∥f(t)− g(t)
∥∥p dt

]1/p
.

Then there exists

Dp
W

[
f(·), g(·)] := lim

l→∞
Dp

Sl

[
f(·), g(·)] (1.2)

in [0,∞]. The distance appearing in (1.2) is called the Weyl distance of f(·) and g(·). A function f ∈
Lp
loc(I : X) is said to be Stepanov p-bounded if and only if

‖f‖Sp := sup
t∈I

( t+1∫
t

‖f(s)‖p ds
)1/p

< ∞.

By Lp
S(I : X) we denote the vector space consisting of all Stepanov p-bounded functions; equipped

with the above norm, Lp
S(I : X) is a Banach space. We say that a function f ∈ Lp

S(I : X) is Stepanov
p-almost periodic if and only if the function f̂ : I → Lp([0, 1] : X), defined by f̂(t)(s) := f(t + s),

t ∈ I, s ∈ [0, 1] is almost periodic. A function f ∈ Lp
loc(R : X) is called Stepanov p-almost automorphic

if and only if for each real sequence (an) there exists a subsequence (ank
) and a function g ∈ Lp

loc(R : X)

such that

lim
k→∞

t+1∫
t

∥∥∥f(ank
+ s
)− g(s)

∥∥∥p ds = 0

and

lim
k→∞

t+1∫
t

∥∥∥g(s− ank

)− f(s)
∥∥∥p ds = 0

for each t ∈ R. Any Stepanov p-almost automorphic function f(·) has to be Sp-bounded (1 ≤ p < ∞).

In this paper, we reconsider the notion of Weyl p-almost automorphy introduced by S. Abbas [1] in
2012 and propose the following notions of Weyl p-almost automorphy: the Weyl p-almost automorphy of
type 1, the Weyl p-almost automorphy of type 2 and the joint Weyl p-almost automorphy (1 ≤ p < ∞).
Furthermore, we introduce and analyze the multi-dimensional analogues of these concepts by using the
definitions and results from the theory of Lebesgue spaces with variable exponents (the introduced classes
of functions seem to be not considered elsewhere even in the constant coefficient case); in such a way,
we continue our recent analysis of multi-dimensional almost periodicity and multi-dimensional almost
automorphy carried out in our joint research studies [9]-[11] with A. Chávez, K. Khalil and M. Pinto.
Several illustrative examples, open problems and applications to the abstract Volterra integro-differential
equations are presented (for the Weyl and Besicovitch generalizations of the almost periodic functions
and the almost automorphic functions, we refer the reader to [2, 3, 5, 6, 7, 11, 32, 19, 24, 25, 27]
and [28, 29, 33, 34, 35, 37, 38, 39]). It should be also noted that we present some new results about
the (equi-)Weyl almost periodic functions here; for example, in [19], we have emphasized that some
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relations presented in [2, Table 2, p. 56] are stated incorrectly as well as that there is no reasonable
information which could tell us whether the class of Weyl-p-almost periodic functions in the sense of
extended Kovanko’s approach is contained in the class of Besicovitch p-almost periodic functions or not,
as well as whether a Weyl-p-almost periodic function f : R → C has the mean value (1 ≤ p < ∞).
In this paper, we prove by a simple example that for each finite number p ≥ 1 there exists a Weyl-p-
almost periodic function f : R → [0,∞) satisfying that f(·) is Weyl-p-almost automorphic, neither
Weyl-p-almost automorphic of type 1 nor jointly Weyl-p-almost automorphic, as well as that f(·) is
not Besicovitch-p-almost periodic (Besicovitch p-bounded) and has no finite mean value (see [24] for
the notion; from our recent research study [26] we know that there exists an infinitely differentiable
function f : R → [0,∞) satisfying that for each finite number p ≥ 1 the function f(·) is Weyl p-
almost automorphic and not Besicovitch-p-almost periodic (Besicovitch p-bounded)). See Theorem 2.10
and Example 3.4 for more details (in Theorem 2.12, we analyze the Weyl almost automorphic prop-
erties of the Heaviside function; both results, Theorem 2.10 and Theorem 2.12, can be formulated as
examples but we have decided to formulate them as theorems because of their indisputable theoretical
novelties).

The organization and main ideas of this paper can be briefly summarized as follows. The main def-
initions and results about the Lebesgue spaces with variable exponent are collected in Subsection 1.1;
Subsection 1.2 recalls the fundamental information about multi-dimensional Weyl almost periodic func-
tions we will need later on. The core of this paper is Section 2, in which we introduce three new concepts
of Weyl p-almost automorphy for vector-valued functions depending on one real variable. Here we re-
consider and give some constructive criticism about the notion introduced by S. Abbas, providing also
numerous important examples and relations between the notions of Weyl p-almost automorphy, Weyl
p-almost automorphy of type 1, Weyl p-almost automorphy of type 2 and joint Weyl p-almost automor-
phy (it is worth noting that, in Subsection 2.1, we define the notion of Weyl p-almost automorphy of
type 2 without using limit functions, which seems to be competely new and not considered elsewhere in
the existing literature; this is motivated by the fact that the spaces of equi-Weyl-p-almost periodic func-
tions are not complete with respect to the Weyl metric). We continue our analysis in Section 3, where
we investigate multi-dimensional Weyl almost automorphic functions in Lebesgue spaces with variable
exponent; in Subsection 3.1, we specifically analyze Weyl p(u)-(F,R,B,W )-multi-almost automorphic
functions of type 2 and jointly Weyl p(u)-(F,R,B,W )-multi-almost automorphic functions, which are
most important for applications. In Section 4, we apply our theoretical results in the qualitative analysis
of solutions for various classes of the abstract Volterra integro-differential equations in Banach spaces; in
Section 5, we present some conclusions, remarks and further perspectives for the investigations of Weyl
and Besicovitch classes of almost automorphic functions. For better readability, we have repeated some
known definitions and results which already exist in other references published so far.

We use the standard notation throughout the paper. We assume henceforth that (X, ‖ · ‖), (Y, ‖ · ‖Y )
and (Z, ‖ · ‖Z) are complex Banach spaces. By L(X,Y ) we denote the Banach algebra of all bounded
linear operators from X into Y with L(X,X) being denoted L(X).

For given real number s ∈ R, we define �s	 := sup{l ∈ Z : l ≤ s} and 
s� := inf{l ∈ Z : s ≤ l}.
The Euler Gamma function is denoted by Γ(·); we set gζ(t) := tζ−1/Γ(ζ), ζ > 0. The Weyl-Liouville
fractional derivative Dγ

t,+u(t) of order γ ∈ (0, 1) is defined for those continuous functions u : R → X
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such that t �→ ∫ t

−∞ g1−γ(t− s)u(s) ds, t ∈ R is a well-defined continuously differentiable mapping, by

Dγ
t,+u(t) :=

d

dt

t∫
−∞

g1−γ(t− s)u(s) ds, t ∈ R.

For a mapping a : (0,∞) × N → C, we say that lim(l,m)→+∞ a(l,m) = a ∈ C if and only if for every
ε > 0 there exists a positive number s ∈ N such that, for every l ∈ (s,∞) and m ∈ N with m ≥ s, we
have |a(l,m) − a| < ε; as usually, we write al,m for a(l,m).

1.1. Lebesgue spaces with variable exponents Lp(x)

Let ∅ �= Ω ⊆ Rn be a nonempty Lebesgue measurable subset and let M(Ω : X) denote the collection
of all measurable functions f : Ω → X; M(Ω) := M(Ω : R). Furthermore, P(Ω) denotes the vector
space of all Lebesgue measurable functions p : Ω → [1,∞]. By m(·) we denote the Lebesgue measure
on Rn.

For any p ∈ P(Ω) and f ∈ M(Ω : X), we define

ϕp(x)(t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tp(x), t ≥ 0, 1 ≤ p(x) < ∞,

0, 0 ≤ t ≤ 1, p(x) = ∞,

∞, t > 1, p(x) = ∞
and

ρ(f) :=

∫
Ω

ϕp(x)(‖f(x)‖) dx.

We define the Lebesgue space Lp(x)(Ω : X) with variable exponent as follows,

Lp(x)(Ω : X) :=
{
f ∈ M(Ω : X) : lim

λ→0+
ρ(λf) = 0

}
.

Equivalently,

Lp(x)(Ω : X) =
{
f ∈ M(Ω : X) : there exists λ > 0 such that ρ(λf) < ∞

}
;

see e.g., [16, p. 73]. For every u ∈ Lp(x)(Ω : X), we introduce the Luxemburg norm of u(·) by

‖u‖p(x) := ‖u‖Lp(x)(Ω:X) := inf
{
λ > 0 : ρ(f/λ) ≤ 1

}
.

Equipped with the above norm, Lp(x)(Ω : X) is a Banach space (see e.g. [16, Theorem 3.2.7] for the
scalar-valued case), coinciding with the usual Lebesgue space Lp(Ω : X) in the case that p(x) = p ≥ 1

is a constant function. Further on, for any p ∈ M(Ω), we define

p− := essinfx∈Ωp(x) and p+ := esssupx∈Ωp(x).

Set

D+(Ω) :=
{
p ∈ M(Ω) : 1 ≤ p− ≤ p(x) ≤ p+ < ∞ for a.e. x ∈ Ω

}
.
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If p ∈ D+(Ω), then we know that

Lp(x)(Ω : X) =
{
f ∈ M(Ω : X) ; for all λ > 0 we have ρ(λf) < ∞

}
.

We will use the following lemma (cf. [16] for the scalar-valued case):

Lemma 1.1. (i) (The Hölder inequality) Let p, q, r ∈ P(Ω) such that

1

q(x)
=

1

p(x)
+

1

r(x)
, x ∈ Ω.

Then, for every u ∈ Lp(x)(Ω : X) and v ∈ Lr(x)(Ω), we have uv ∈ Lq(x)(Ω : X) and

‖uv‖q(x) ≤ 2‖u‖p(x)‖v‖r(x).

(ii) Let Ω be of a finite Lebesgue’s measure and let p, q ∈ P(Ω) such q ≤ p a.e. on Ω. Then Lp(x)(Ω :

X) is continuously embedded in Lq(x)(Ω : X) with the constant of embedding less or equal to
2(1 +m(Ω)).

(iii) Let f ∈ Lp(x)(Ω : X), g ∈ M(Ω : X) and 0 ≤ ‖g‖ ≤ ‖f‖ a.e. on Ω. Then g ∈ Lp(x)(Ω : X) and
‖g‖p(x) ≤ ‖f‖p(x).

We also need the following simple lemma, whose proof can be omitted:

Lemma 1.2. Suppose that f ∈ Lp(x)(Ω : X) and A ∈ L(X,Y ). Then Af ∈ Lp(x)(Ω : Y ) and
‖Af‖Lp(x)(Ω:Y ) ≤ ‖A‖ · ‖f‖Lp(x)(Ω:X).

For further information concerning the Lebesgue spaces with variable exponents Lp(x), we refer the
reader to the research monograph [16] by L. Diening, P. Harjulehto, P. Hästüso and M. Ruzicka, as well
as to [17] and [36]. The basic source of information about generalized almost periodicity and generalized
almost automorphy in the Lebesgue spaces with variable exponents can be obtained by consulting [10,
32, 14, 15, 19, 25, 29, 30, 31] and references quoted therein.

1.2. Weyl almost periodic functions in Lebesgue spaces with variable exponent

In this subsection, we assume first that the following condition holds:

(A): I = R or I = [0,∞), φ : [0,∞) → [0,∞), p ∈ P(I) and F : (0,∞)× I → (0,∞).

Besides many other notions, the notion of an (equi-)Weyl-(p, φ, F )-almost periodic function has been
introduced in [29] as follows (see [24] for the case that p(x) ≡ p ∈ [1,∞), φ(x) ≡ x and F (l, t) ≡
l(−1)/p, when we obtain the usually considered concept of (equi-)Weyl-p-almost periodicity which will
be used henceforth):

Definition 1.3. Suppose that condition (A) holds, f : I → X and φ(‖f(·+ τ)− f(·)‖) ∈ Lp(x)(K) for
any τ ∈ I and any compact subset K of I.
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(i) It is said that the function f(·) is equi-Weyl-(p, φ, F )-almost periodic, f ∈ e−W
(p,φ,F )
ap (I : X) for

short, if and only if for each ε > 0 we can find two real numbers l > 0 and L > 0 such that any
interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that

sup
t∈I

[
F (l, t)

[
φ
(∥∥f(·+ τ)− f(·)∥∥)

Lp(·)[t,t+l]

]]
≤ ε.

(ii) It is said that the function f(·) is Weyl-(p, φ, F )-almost periodic, f ∈ W
(p,φ,F )
ap (I : X) for short, if

and only if for each ε > 0 we can find a real number L > 0 such that any interval I ′ ⊆ I of length
L contains a point τ ∈ I ′ such that

lim sup
l→∞

sup
t∈I

[
F (l, t)

[
φ
(∥∥f(·+ τ)− f(·)∥∥)

Lp(·)[t,t+l]

]]
≤ ε.

In recent joint research article with V. Fedorov [19], we have analyzed the various notions of multi-
dimensional Weyl almost periodicity in Lebesgue spaces with variable exponents Lp(x). For our further
work, it will be necessary to remind the readers of the following notion: Assume that B is a non-empty
collection of certain subsets of X such that for each x ∈ X there exists B ∈ B with x ∈ B. Suppose that
the following condition holds:

(WM1):∅ �= Λ ⊆ Rn, ∅ �= Λ′ ⊆ Rn, ∅ �= Ω ⊆ Rn is a Lebesgue measurable set such that m(Ω) > 0,

p ∈ P(Λ), Λ′+Λ+ lΩ ⊆ Λ, Λ+ lΩ ⊆ Λ for all l > 0, φ : [0,∞) → [0,∞) and F : (0,∞)×Λ →
(0,∞).

We need the following notion:

Definition 1.4. (i) By e − W
(p(u),φ,F)
Ω,Λ′,B (Λ × X : Y ) we denote the set consisting of all functions F :

Λ ×X → Y such that, for every ε > 0 and B ∈ B, there exist two finite real numbers l > 0 and
L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that

sup
x∈B

sup
t∈Λ

F(l, t)φ
(∥∥F (τ + u;x)− F (u;x)

∥∥
Y

)
Lp(u)(t+lΩ)

< ε.

(ii) By W
(p(u),φ,F)
Ω,Λ′,B (Λ×X : Y ) we denote the set consisting of all functions F : Λ×X → Y such that,

for every ε > 0 and B ∈ B, there exists a finite real number L > 0 such that for each t0 ∈ Λ′ there
exists τ ∈ B(t0, L) ∩ Λ′ such that

lim sup
l→+∞

sup
x∈B

sup
t∈Λ

F(l, t)φ
(∥∥F (τ + u;x)− F (u;x)

∥∥
Y

)
Lp(u)(t+lΩ)

< ε.

If F : Λ → Y, then we omit the term “B” from the notation; for example, we write e−W
(p(u),φ,F)
Ω,Λ′ (Λ :

Y ) in place of e−W
(p(u),φ,F)
Ω,Λ′,B (Λ×X : Y ). Basically, this will be our terminological agreement in many

similar situations henceforth. If we write p ≥ 1 only, then we tacitly assume that the exponent p has a
finite value.
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2. Weyl almost automorphic functions of one real variable

The concept of Weyl almost automorphy was introduced by S. Abbas [1, Definition 0.4] in 2012 (see
also [24, Definition 3.1.2]):

Definition 2.1. Let p ≥ 1. Then we say that a function f ∈ Lp
loc(R : X) is Weyl p-almost automorphic if

and only if for every real sequence (sn), there exist a subsequence (snk
) and a function f ∗ ∈ Lp

loc(R : X)

such that

lim
k→∞

lim
l→+∞

1

2l

l∫
−l

∥∥∥f(t+ snk
+ x
)− f ∗(t+ x)

∥∥∥p dx = 0 (2.1)

and

lim
k→∞

lim
l→+∞

1

2l

l∫
−l

∥∥∥f ∗(t− snk
+ x
)− f(t+ x)

∥∥∥p dx = 0 (2.2)

for each t ∈ R. The set of all such functions is denoted by W pAA(R : X).

Here, by saying that limk→∞ liml→+∞ ak,l = a we mean that for each k ∈ N the limit liml→+∞ ak,l
exists as well as that for each ε > 0 there exists k0 ∈ N such that for each k ∈ N0 with k ≥ k0 we
have that the limit liml→+∞ ak,l does not exceed ε; the notion of double limit liml→∞ limk→+∞ ak,l = a

is understood similarly. See the research article [22] by E. Habil for more details about the subject.

The investigation of Weyl p-almost automorphy, introduced by our friend and colleague S. Abbas, has
strongly motivated us to carry out many research studies of this intriguing notion by now. Regrettably,
this is our first research article in which we perceive some unclear places in Definition 2.1 and the main
result of [1]:

Remark 2.2. 1. In [1, Definition 0.4], it is assumed but not explicitly stated that the integration is taken
with respect to the variable x because the limits as l → +∞ in this definition must tend to zero as
k → +∞, pointwise for every fixed t ∈ R; hence, t cannot be the variable under which the integration is
taken twice. Also, there are two extra left brackets in the integrals mentioned and the considered function
has range in X , which are only small typographical errors.

2. The class of Weyl pseudo almost automorphic functions has been introduced and analyzed in [1],
as well. But, the above observation becomes crucial in this point because the proof of deduced compo-
sition theorem for Weyl pseudo almost automorphic functions is based on the wrong arguments. In this
proof, the integration is taken over the variable t and the author has operated with sup−∞<x<+∞ · in the
expressions appeared on the right hand side of page 3 (see [1, l.-8, -9]), which is completely meaningless
because the integration (if we want to take the pointwise limits for t ∈ R as k → +∞) must be taken
with the variable x.

3. Suppose that the function f(·) is Stepanov p-bounded as well as that, for a sequence (sn) given in
advance, the limit function f ∗(·) from Definition 2.1 is also Stepanov p-bounded. Then for each k ∈ N

the limits

lim
l→+∞

1

2l

l∫
−l

∥∥∥f(t+ snk
+ x
)− f ∗(t+ x)

∥∥∥p dx
© 2023 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 7



and

lim
l→+∞

1

2l

l∫
−l

∥∥∥f ∗(t− snk
+ x
)− f(t+ x)

∥∥∥p dx
from Definition 2.1 are equal, which cannot be satisfied in any reasonable definition of Weyl p-almost
automorphy. Speaking-matter-of-factly, we have

lim
l→+∞

1

2l

l∫
−l

∥∥∥f(t+ snk
+ x
)− f ∗(t+ x)

∥∥∥p dx

= lim
l→+∞

1

2l

t+l+snk∫
t−l+snk

∥∥∥f(x)− f ∗(x− snk

)∥∥∥p dx

= lim
l→+∞

1

2l

t+l∫
t−l

∥∥∥f(x)− f ∗(x− snk

)∥∥∥p dx (2.3)

= lim
l→+∞

1

2l

l∫
−l

∥∥∥f ∗(t− snk
+ x
)− f(t+ x)

∥∥∥p dx,
where (2.3) follows from a simple computation involving the Stepanov p-boundedness of functions f(·)
and f ∗(·).

The genesis of this paper is strongly motivated by the above observations and the following question:

Question 2.3. Let 1 ≤ p < ∞. If we accept the notion introduced in Definition 2.1, is it true that a
(compactly, Stepanov p-) almost automorphic function is Weyl p-almost automorphic?

In any expected notion of Weyl p-almost automorphy, this must be satisfied. But, unfortunately, there
is no reasonable argumentation which could tell us straightforwardly that the answer to Question (2.3) is
affirmative. Therefore, we are getting into some unexpected troubles; how to proceed further? Our first
idea is to replace the limits in the equations (2.1)-(2.2):

Definition 2.4. Let p ≥ 1. Then we say that a function f ∈ Lp
loc(R : X) is Weyl p-almost automorphic

of type 1 if and only if for every real sequence (sn), there exist a subsequence (snk
) and a function

f ∗ ∈ Lp
loc(R : X) such that

lim
l→+∞

lim
k→∞

1

2l

l∫
−l

∥∥∥f(t+ snk
+ x
)− f ∗(t+ x)

∥∥∥p dx = 0

and

lim
l→+∞

lim
k→∞

1

2l

l∫
−l

∥∥∥f ∗(t− snk
+ x
)− f(t+ x)

∥∥∥p dx = 0

for each t ∈ R. The set of all such functions is denoted by W pAA1(R : X).
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Accepting this definition, it is very simple to show that a Stepanov p-almost automorphic function is
Weyl p-almost automorphic of type 1 because for every fixed real numbers t and l we have

lim
k→∞

1

2l

l∫
−l

∥∥∥f(t+ snk
+ x
)− f ∗(t+ x)

∥∥∥p dx = 0

and

lim
k→∞

1

2l

l∫
−l

∥∥∥f ∗(t− snk
+ x
)− f(t+ x)

∥∥∥p dx = 0. (2.4)

In actual fact, we have

1

2l

l∫
−l

∥∥∥f(t+ snk
+ x
)− f ∗(t+ x)

∥∥∥p dx ≤ 1

2l

�2l�∑
j=0

t−l+j+1∫
t−l+j

∥∥∥f(snk
+ x
)− f ∗(x)

∥∥∥p dx,
which simply implies by definition of Stepanov p-almost automorphy that for any real number ε > 0 we
can always find a positive integer k0 ∈ N such that

1

2l

l∫
−l

∥∥∥f(t+ snk
+ x
)− f ∗(t+ x)

∥∥∥p dx ≤ 1 + �2l	
2l

ε

2
≤ ε, k ≥ k0;

we can similarly prove the limit equation (2.4). On the other hand, it can be easily shown by using
the Bochner criterion [24] that any Stepanov p-almost periodic function f : R → X is Weyl p-almost
automorphic, Weyl p-almost automorphic of type 1, as well as jointly Weyl p-almost automorphic in the
sense of the following definition (with the limit function f ∗ ≡ f ):

Definition 2.5. Let p ≥ 1. Then we say that a function f ∈ Lp
loc(R : X) is jointly Weyl p-almost

automorphic if and only if for every real sequence (sn), there exist a subsequence (snk
) and a function

f ∗ ∈ Lp
loc(R : X) such that

lim
(l,k)→∞

1

2l

l∫
−l

∥∥∥f(t+ snk
+ x
)− f ∗(t+ x)

∥∥∥p dx = 0 (2.5)

and

lim
(l,k)→∞

1

2l

l∫
−l

∥∥∥f ∗(t− snk
+ x
)− f(t+ x)

∥∥∥p dx = 0 (2.6)

for each t ∈ R. The set of all such functions is denoted by W pAAj(R : X).

Remark 2.6. We feel it is our duty to say that the limits in the previous two definitions are nice but a little
bit unnatural. It will be difficult to extract a subsequence that verifies the above properties and it would
be very interesting to find other more practical criteria characterizing these concepts.

It can be simply verified that the joint Weyl p-almost automorphy of function f ∈ Lp
loc(R : X) implies

its Weyl p-almost automorphy provided that for each k ∈ N the both limits in the equations (2.1)-(2.2)
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exist as l → +∞; a similar comment holds for the notion of Weyl p-almost automorphy of type 1 (see
also [22, Theorem 2.13]). Before proceeding any further, we would like to note that the joint Weyl
p-almost automorphy of a function f ∈ Lp

loc(R : X) does not imply its Stepanov p-almost automorphy:

Example 2.7. Let p ≥ 1. Then it is well known that the function f(t) := χ[0,1/2](t), t ∈ R is not
Stepanov p-almost automorphic as well as that this function is equi-Weyl-p-almost periodic ([24]). It is
also jointly Weyl p-almost automorphic with the limit function f ∗ ≡ 0, as easily shown (futhermore, this
function is jointly Weyl p-almost automorphic in the sense of Definition 3.1(iii) below for any function
F(l) satisfying liml→+∞ F(l) = 0, with the meaning clear). The use of zero limit function shows that
Lp(R : X) ⊆ W pAAj(R : X) and Lp(R : X) ⊆ AAW F,p,j

R (R : X), provided that liml→+∞ F(l) = 0

and R denotes the collection of all real sequences; see Definition 3.1(iii) for the notion. The above
conclusions remain valid for the Weyl p-almost automorphy and the Weyl p-almost automorphy of type
1, with the same choice of the limit function.

From application point of view, the main drawback of the notion of Weyl p-almost automorphy (Weyl
p-almost automorphy of type 1) presents the fact that we cannot so simply state satisfactory results about
the invariance of Weyl p-almost automorphy (Weyl p-almost automorphy of type 1) under the actions of
convolution products; cf. [24] and [25] for more details about the subject. Concerning the joint Weyl
p-almost automorphy, the best we can do in the present situation is to state the following result with
p = 1; the proof is very similar to that of [27, Proposition 7] and therefore omitted:

Proposition 2.8. Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family satisfying
that

∞∫
0

(1 + t)‖R(t)‖L(X,Y ) dt < ∞.

Let f ∈ W 1AAj(R : X), and let f(·) be essentially bounded. Then the function F (·), given by

F (t) :=

t∫
−∞

R(t− s)f(s) ds, t ∈ R, (2.7)

is bounded and belongs to the class W 1AAj(R : Y ).

The situation in which the exponent p is strictly greater that one is a bit complicated. Concerning this
problematic, we would like to raise the following issue:

Question 2.9. Can we deduce an analogue of [18, Theorem 1] for joint Weyl p-almost automorphy?

Further on, it should be noted that the Weyl p-almost automorphy does not imply Weyl p-almost auto-
morphy of type 1 or joint Weyl p-almost automorphy:

Theorem 2.10. Suppose that σ ∈ (0, 1), p ∈ [1,∞) and (1−σ)p < 1. Define f(x) := |x|σ, x ∈ R. Then
the function f(·) is Weyl p-almost automorphic, not Weyl p-almost automorphic of type 1 nor joint Weyl p-
almost automorphic; furthermore, the function f(·) is Weyl p-almost periodic, Besicovitch p-unbounded
and has no mean value.
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Proof. Suppose first that a > 1− (1− σ)p. It is clear that, for every real numbers ω and t, we have

lim
l→+∞

l−a

l∫
−l

∣∣∣∣∣t+ x+ ω
∣∣σ − |t+ x|σ

∣∣∣p dx = 0,

which implies that the function f(·) is Weyl p-almost automorphic with the limit function f ∗ ≡ f

(moreover, f ∈ AAW F,p
R (R : C) in the sense of Definition 3.1(i) with F(l) ≡ l−a and R being the

collection of all real sequences). In order to see that, we can apply the Lagrange mean value theorem and
the following computation (l > max(|t|, |t± ω|)):

l−a

t+l∫
t−l

∣∣∣∣∣x+ ω
∣∣σ − |x|σ

∣∣∣p dx

≤ l−aσp|ω|p
t+l∫

t−l

max
v∈[|x|,|x+ω|]∪[|x+ω|,|x|]

v(σ−1)p dx

≤ l−aσp|ω|p
t+l∫

t−l

[
|x|(σ−1)p + |x+ ω|(σ−1)p

]
dx

= l−aσp|ω|p
[
(t+ l)1−(1−σ)p + (l − t)1−(1−σ)p + (l − t)1−(1−σ)p

+ (t+ l + ω)1−(1−σ)p + (l − t− ω)1−(1−σ)p
]

≤ l−aσp|ω|p
[
4t1−(1−σ)p + 4l1−(1−σ)p + 2ω1−(1−σ)p

]
→ 0, l → +∞.

To see that f(·) is not Weyl p-almost automorphic of type 1, it suffices to show that, for every l > 0, for
every f ∗ ∈ Lp

loc(R : C) and for every strictly increasing real sequence (sk) tending to plus infinity, we
have

lim
k→+∞

l∫
−l

∣∣∣∣∣x+ sk
∣∣σ − f ∗(x)

∣∣∣p dx = +∞.

This follows from the next computation:

l∫
−l

∣∣∣∣∣x+ sk
∣∣σ − f ∗(x)

∣∣∣p dx ≥
l∫

0

∣∣∣(x+ sk
)σ − f ∗(x)

∣∣∣p dx

≥
l∫

0

21−p
(
x+ sk

)σp
dx−

l∫
0

∣∣f ∗(x)
∣∣p dx

≥ 21−plsσpk −
l∫

0

∣∣f ∗(x)
∣∣p dx → +∞, k → +∞.

We can similarly prove that f(·) is not jointly Weyl p-almost automorphic.

Concerning the Weyl almost periodic properties of the function f(·), we first observe that this function
is not equi-Weyl-(p, x, F )-almost periodic for any function F (l, t) which does not depend on t because,
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for every real numbers l > 0 and t ∈ R, we have

lim
τ→+∞

t+l∫
t

∣∣∣∣∣x+ τ
∣∣σ − ∣∣x∣∣σ∣∣∣ dx = +∞.

On the other hand, if a > (1− (1−σ)p)/p, then the function f(·) is Weyl-(p, x, F )-almost periodic with
F (l, t) ≡ l−a. Towards this end, we will prove the following estimate:

t+l∫
t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx
≤ σp|τ |p l1−(1−σ)p

1− (1− σ)p

[
1 + 21−(σ−1)p

]
+ |τ |σp+1 · (2σ + 1

)p
, (2.8)

provided t, τ ∈ R and l > |τ |. This estimate is clearly satisfied for τ = 0 and, since the right hand
side of estimate does not depend on t ∈ R, it suffices to verify its validity for τ > 0 (we can apply the
substitution x �→ x+ τ ). Let it be the case; then we recognize the following subcases:

1. t ≤ −τ and t + l ≤ 0. Then we have two possibilities:

1.1. −τ ≤ t + l. Then we have 0 ≤ −(t+ τ) ≤ l and
t+l∫
t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx ≤
0∫

t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx

=

−τ∫
t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx+

0∫
−τ

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx

≤
−τ∫
t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx+ |τ |σp+1 · (2σ + 1
)p
.

Applying the Lagrange mean value theorem, we can continue the computation as follows:

≤ σp|τ |p
−τ∫
t

max
v∈(−x−τ,−x)

vp(σ−1) dx+ |τ |σp+1 · (2σ + 1
)p

= σp|τ |p
−τ∫
t

(−x− τ)p(σ−1) dx+ |τ |σp+1 · (2σ + 1
)p

= σp|τ |p [−(t + τ)]1−(1−σ)p

1− (1− σ)p
+ |τ |σp+1 · (2σ + 1

)p
≤ σp|τ |p l1−(1−σ)p

1− (1− σ)p
+ |τ |σp+1 · (2σ + 1

)p
.

1.2. t+ l ≤ −τ. Then we have 0 ≤ −(t+ τ), 0 ≤ −(t + τ + l) and we can apply the Lagrange mean
value theorem in order to see that:

t+l∫
t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx ≤ σp|τ |p
t+l∫
t

max
v∈(−x−τ,−x)

vp(σ−1) dx
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= σp|τ |p
t+l∫
t

(−x− τ)(σ−1)p dx = σp|τ |p (−t− τ)1−(1−σ)p − (−t− τ − l)1−(1−σ)p

1− (1− σ)p

≤ σp|τ |p l1−(1−σ)p

1− (1− σ)p
.

2. t ≤ −τ and t + l > 0. Then we have l ≥ |t| ≥ |τ | and arguing as in case 1.1, we get:

t+l∫
t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx

≤
−τ∫
t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx+

0∫
−τ

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx+

t+l∫
0

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx

≤ σp|τ |p l1−(1−σ)p

1− (1− σ)p
+ |τ |σp+1 · (2σ + 1

)p
+

t+l∫
0

[(
x+ τ

)σ − xσ
]p

dx

≤ σp|τ |p l1−(1−σ)p

1− (1− σ)p
+ |τ |σp+1 · (2σ + 1

)p
+ σp|τ |p

t+l∫
0

x(σ−1)p dx

≤ σp|τ |p l1−(1−σ)p

1− (1− σ)p
+ |τ |σp+1 · (2σ + 1

)p
+ σp|τ |p (t+ l)1−(1−σ)p

1− (1− σ)p

≤ σp|τ |p l1−(1−σ)p

1− (1− σ)p
+ |τ |σp+1 · (2σ + 1

)p
+ σp|τ |p (2l)1−(1−σ)p

1− (1− σ)p
.

3. t > −τ and t+l > 0 (case t > −τ and t+l ≤ 0 cannot happen because it implies−τ < t < t+l ≤ 0,
which contradicts our assumption l > |τ |). We consider the following two subcases of this case:

3.1. t ≥ 0. Then the situation is clear since
t+l∫
t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx =

t+l∫
t

[(
x+ τ

)σ − xσ
]p

dx

≤ σp|τ |p
t+l∫
t

x(σ−1)p dx = σp|τ |p (t+ l)1−(1−σ)p − t1−(1−σ)p

1− (1− σ)p
≤ σp|τ |p l1−(1−σ)p

1− (1− σ)p
.

3.2. −τ < t < 0. Then l > |t| and we have

t+l∫
t

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx

≤
0∫

−τ

∣∣∣∣∣x+ τ
∣∣σ − |x|σ

∣∣∣p dx+

2l∫
0

[(
x+ τ

)σ − xσ
]p

dx

≤ |τ |σp+1 · (2σ + 1
)p

+ σp|τ |p (2l)1−(1−σ)p

1− (1− σ)p
.
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Therefore, the estimate (2.8) is proved. Fix now τ ∈ R and l > |τ |. The estimate (2.8) implies

sup
t∈R

l−a

[ t+l∫
t

∣∣∣∣∣x + τ
∣∣σ − |x|σ

∣∣∣p dx
]1/p

≤ l−a

[
σ|τ | l(1−(1−σ)p)/p

(1− (1− σ)p)1/p

[
1 + 21−(σ−1)p

]1/p
+ |τ |(σp+1)/p · (2σ + 1

)]
. (2.9)

It is clear that (2.9) implies the required conclusion, because for any ε > 0 in the corresponding definition
of Weyl-(p, x, F )-almost periodicity we can take L = 1 and after that, for any τ ∈ I ′ we can take

l ≥ max

((
ε|τ |−σp+1

p

)(−1)/a

,
(
ε|τ |−1

) p
1−(1−σ)p−ap

)
.

In particular, f(·) is Weyl-p-almost periodic; further on, this function is not Besicovitch p-bounded since

lim
l→+∞

1

l

l∫
0

xσp dx = lim
l→+∞

1

l

lσp+1

σp+ 1
= +∞.

Therefore, the function f(·) is not Besicovitch-p-almost periodic (Besicovitch-Doss-p-almost periodic,
equivalently, see [24, Definition 2.13.1]) and the function f(·) has no finite mean value since

lim
l→+∞

1

l

l∫
0

xσ dx = lim
l→+∞

1

l

lσ+1

σ + 1
= +∞.

Before going any further, we would like to note that we can prove that the function f(·) is not Weyl
p-almost automorphic of type 1 by applying the following general result:

Proposition 2.11. Suppose p ≥ 1 and f : R → Y is not Stepanov p-bounded. Then f(·) is not Weyl
p-almost automorphic of type 1 and not jointly Weyl p-almost automorphic.

Proof. We will only prove that f(·) is not Weyl p-almost automorphic of type 1. Suppose the contrary.
Then there exist a real number l ≥ 1 and a p-locally integrable function f ∗ : R → Y such that

lim
k→+∞

l∫
−l

∥∥f(x+ snk
)− f ∗(x)

∥∥p dx ≤ 1. (2.10)

Since f(·) is not Stepanov p-bounded, we may assume without loss of generality that there exists a
strictly increasing sequence (ln) tending to plus infinity such that limn→+∞

∫ l+ln
−l+ln

‖f(x)‖p dx = +∞.

Define sn := l + ln, n ∈ N. Then for each subsequence (snk
) of (sn) we have

l+snk∫
−l+snk

∥∥f(x)∥∥p dx =

lnk
+2l∫

lnk

∥∥f(x)∥∥p dx → +∞,
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as k → +∞. This contradicts (2.10) since

1

2l

l∫
−l

∥∥f(x+ snk
)− f ∗(x)

∥∥p dx ≥ 1

2l

[
21−p

l∫
−l

∥∥f(x+ snk
)
∥∥p dx−

l∫
−l

∥∥f ∗(x)
∥∥p dx

]

→ +∞, k → +∞.

Let p ≥ 1. Then we know that the Heaviside function f(t) := χ[0,∞)(t), t ∈ R is not equi-Weyl-
p-almost periodic as well as that this function is Weyl-p-almost periodic ([24] and [29, Example 2.12,
Example 2.13]). It is very interesting what is going on with the Weyl p-almost automorphic properties of
the Heaviside function. Concerning this question, we have the following:

Theorem 2.12. The Heaviside function f(·) is not jointly Weyl p-almost automorphic but f(·) is both
Weyl p-almost automorphic and Weyl p-almost automorphic of type 1.

Proof. Suppose that f(·) is jointly Weyl p-almost automorphic; let (sn) be any strictly increasing se-
quence of real numbers tending to plus infinity and let ε ∈ (0, 2−p/3) be given. By definition, we know
that there exist a subsequence (snk

) and a function f ∗ ∈ Lp
loc(R : X) such that (2.5) and (2.6) hold true.

Hence, there exists a finite real number m > 0 such that, for every l ≥ m and for every k ∈ N with
k ≥ m, we have

1

2l

[ l∫
−l

∣∣∣f(t+ snk
+ x
)− f ∗(t+ x)

∣∣∣p dx+

l∫
−l

∣∣∣f ∗(t− snk
+ x
)− f(t+ x)

∣∣∣p dx
]
< ε.

This implies

1

2l

[ ∫
[−l,l]∩(−∞,−t−snk

]

∣∣f ∗(t+ x)
∣∣p dx+

∫
[−l,l]∩[−t−snk

,+∞)

∣∣1− f ∗(t+ x)
∣∣p dx

+

∫
[−l,l]∩(−∞,−t]

∣∣f ∗(t+ x− snk

)∣∣p dx+

∫
[−l,l]∩[−t,+∞)

∣∣1− f ∗(t+ x− snk

)∣∣p dx
]

=
1

2l

[ ∫
[−l+t,l+t]∩(−∞,−snk

]

∣∣f ∗(x)
∣∣p dx+

∫
[−l+t,l+t]∩[−snk

,+∞)

∣∣1− f ∗(x)
∣∣p dx

+

∫
[−l+t−snk

,l+t−snk
]∩(−∞,−snk

]

∣∣f ∗(x)∣∣p dx

+

∫
[−l+t−snk

,l+t−snk
]∩[−snk

,∞)

∣∣1− f ∗(x)∣∣p dx
]
< ε.

This particularly holds with t = 0, so that letting k → +∞ in the last estimate (cf. the second addend)
yields

1

2l

l∫
−l

∣∣1− f ∗(x)
∣∣p dx < ε, l ≥ m.
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With fixed k = 
m�, the last estimate in the previous calculation also yields (cf. the first addend) that

1

2l

−sn�m�∫
−l

∣∣f ∗(x)
∣∣p dx < ε, l ≥ m

so that there exists a finite real number m1 > m such that

1

2l

l∫
−l

∣∣1− f ∗(x)
∣∣p dx+

1

2l

0∫
−l

∣∣f ∗(x)
∣∣p dx < 3ε, l ≥ m1.

As a consequence, we have

1

2l

0∫
−l

∣∣1− f ∗(x)
∣∣p dx+

1

2l

0∫
−l

∣∣f ∗(x)
∣∣p dx < 3ε, l ≥ m1.

This contradicts the following estimate

1

2l

0∫
−l

∣∣1− f ∗(x)
∣∣p dx+

1

2l

0∫
−l

∣∣f ∗(x)
∣∣p dx ≥ 1

2l

0∫
−l

2 · 2−p dx = 2−p, l ≥ m1,

so that f(·) is not jointly Weyl p-almost automorphic. In order to see that f(·) is Weyl p-almost automor-
phic, we can take f ∗ ≡ f in the corresponding definition and here it is only worth noting that, for every
fixed real numbers t and a, we have that the mapping

l �→
l∫

−l

∣∣f(t+ x+ a)− f(t+ x)
∣∣p dx, l ∈ R

is bounded, which follows from a simple analysis concerning the support of the function x �→ f(t+ x+

a) − f(t + x), x ∈ R; let us also stress that the above also shows that f ∈ AAW F,p
R (R : C), provided

that liml→+∞ F(l) = 0 and R denotes the collection of all real sequences (see Definition 3.1(i) for the
notion). It remains to be proved that f(·) is Weyl p-almost automorphic of type 1. More generally,
let F : (0,∞) → (0,∞) be such that liml→+∞ F(l) = 0 and let R denote the collection of all real
sequences; we will prove that f ∈ AAW F,p,1

R (R : C). If the sequence (sn) is bounded, then the situation
is very simple and we can take f ∗(·) to be a certain translation of f(·) after applying the Bolzano-
Weierstrass theorem. If the sequence (sn) is unbounded, then it has a strictly monotone subsequence
(s′n) tending to plus infinity or minus infinity. The consideration in both cases is similar and we may
assume without loss of generality that limn→+∞ s′n = +∞ and s′n > 0 for all n ∈ N. Choose any strictly
increasing sequence (an) of positive real numbers such that limn→+∞ an = +∞. After that, we construct
inductively a subsequence (snk

) of (s′n) so that sn1 = s′1 and the following conditions are satisfied:

snk+1
> snk

+ 2ank
, k ∈ N; (2.11)

|F(v)| < 1

(an1 + an2 + · · ·+ ank
)2
, provided v ≥ snk

and k ∈ N \ {1}. (2.12)
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Define now f ∗(t) := 1 for t ≥ −sn1 or t ∈ [−snk+1
,−ank

− snk
] for some k ≥ 2, and f ∗(t) := 0 if

there exists k ∈ N such that t ∈ (−ank
− snk

,−snk
). By the corresponding definition, the dominated

convergence theorem and a simple argumentation, it suffices to show that

lim
l→+∞

F(l)

l∫
−l

∣∣1− f ∗(t + x)
∣∣p dx = 0 (2.13)

and

∀l > 0 : lim
k→+∞

l∫
−l

∣∣f ∗(t + x− snk

)− f(t+ x)
∣∣p dx = 0. (2.14)

In order to prove (2.14), it suffices to repeat verbatim the argumentation used in the proof of joint Weyl
p-almost automorphy of f(·). We actually need to prove that there exists k0 ∈ N such that for all k ≥ k0
we have ∫

[−l+t−snk
,l+t−snk

]∩(−∞,−snk
]

∣∣f ∗(x)∣∣p dx
+

∫
[−l+t−snk

,l+t−snk
]∩[−snk

,∞)

∣∣1− f ∗(x)∣∣p dx < ε.

But, for sufficiently large values of parameter k we have that ank
> l+ |t|+ |l− t| so that the above sum

is equal to zero due to our construction of function f ∗ and condition (2.11). To prove (2.13), it suffices
to consider the case t = 0 due to the boundedness of function f ∗(·). We need to prove that

lim
l→+∞

F(l)

−sn1∫
−l

∣∣1− f ∗(x)
∣∣p dx = 0.

Let l > sn3 and let l ∈ [snk+1
, snk+2

) for some k ∈ N \ {1}. Taking into account (2.12), we have

F(l)

−sn1∫
−l

∣∣1− f ∗(x)
∣∣p dx ≤

[
max
v≥snk

F(v)

]
·

nk∑
j=1

anj

≤ 1

(an1 + an2 + · · ·+ ank
)2

·
nk∑
j=1

anj ≤
1

(an1 + an2 + · · ·+ ank
)
.

This simply implies the required.

2.1. Concept without limit functions

The set W pAA(R : X), equipped with the usual operations of pointwise addition of functions and
multiplication of functions with scalars, has a linear vector structure. As we have observed in [24], it
is not clear how one can prove (see also [1, p. 5, l. 2-3]) that an equi-Weyl-p-almost periodic function
f : R → X, in the sense of [24, Definition 2.3.1(i)], is Weyl-p-almost automorphic. The main problem
lies in the fact that it is not clear how one can prove that, for a given real sequence (sn), there exist a
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subsequence (snk
) of (sn) and a p-locally integrable function f ∗ : R → X such that the sequence of

translations (f(·+ snk
)) converges to f ∗(·) in the Weyl metric, i.e., that

lim
k→+∞

lim
l→+∞

sup
t∈R

1

2l

l∫
−l

∥∥f(t+ x+ snk

)− f ∗(t + x)
∥∥p dx = 0.

We can only prove that the family of translations {f(· + h) : h ∈ R} is totally bounded with respect to
the Weyl metric (see e.g, [3, Theorem 2] for case p = 1) as well as that, for a given real sequence (sn),

there exists a subsequence (snk
) of (sn) such that the sequence of translations (f(· + snk

)) is a Cauchy
sequence in the Weyl metric (see e.g., [19, Theorem 3.8]), i.e., that for each ε > 0 there exists k0 ∈ N

such that, for every k, m ∈ N, the assumptions k ≥ k0 and m ≥ k0 imply that

lim
l→+∞

sup
t∈R

[
1

2l

l∫
−l

∥∥f(t+ snk
+ x
)− f

(
t+ snm + x

)∥∥p dx
]
< ε. (2.15)

Before proceeding any further, we would like to note that the existence of a subsequence (snk
) of (sn)

such that the sequence of translations (f(· + snk
)) is a Cauchy sequence in the Weyl metric does not

imply that the function f(·) is equi-Weyl-p-almost periodic; for example, this is not true for the Heaviside
function f(·):
Example 2.13. Let (sn) be a real sequence, let (snk

) be the same as (sn), and let ε > 0. We choose
k0 = 1 in the above definition. Then, for every k, m ∈ N, we have

lim
l→+∞

sup
t∈R

[
1

2l

l∫
−l

∥∥f(t+ snk
+ x
)− f

(
t+ snm + x

)∥∥p dx
]
= 0, (2.16)

and therefore, (2.15) is satisfied. In order to see that (2.16) holds, observe that for each t ∈ R the integal

l∫
−l

∥∥f(t+ snk
+ x
)− f

(
t+ snm + x

)∥∥p dx (2.17)

is taken with respect to the variable x which belongs to the interval [−l, l] but the integrand is not equal
to zero only for those values of x for which the numbers t+ snk

+x and t+ snm +x have different signs;
hence, the measure of set of integration in (2.17) is less or equal than 2|snk

− snm|. Since the essential
bound of the integrand is less or equal than 1 for each t ∈ R, we get

sup
t∈R

[ l∫
−l

∥∥f(t+ snk
+ x
)− f

(
t+ snm + x

)∥∥p dx
]
≤ 2
∣∣snk

− snm

∣∣,
which simply implies the required.

In our new concept, which generalizes the concept of equi-Weyl-p-almost periodicity, we do not use
the limit functions with the respect to the Weyl metric but only Cauchy sequences with respect to the
Weyl metric (our idea is, in fact, to remove the operation supt∈R · from the expression (2.15)):
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Definition 2.14. Let p ≥ 1 and f ∈ Lp
loc(R : X). Then we say that f(·) is Weyl p-almost automorphic

of type 2 if and only if for each real sequence (sn) there exists a subsequence (snk
) of (sn) such that for

each ε > 0 and t ∈ R there exists k0 ∈ N such that, for every k, m ∈ N with k ≥ k0 and m ≥ k0, there
exists l0 > 0 such that

1

2l

l∫
−l

∥∥f(t+ snk
+ x
)− f

(
t + snm + x

)∥∥p dx < ε, l ≥ l0. (2.18)

It is clear that the Weyl p-almost automorphic functions of type 2 form a vector space under the usual
operations as well as that [24, Lemma 2.2.13] implies that any Weyl p′-almost automorphic function of
type 2 is Weyl p-almost automorphic of type 2, provided that 1 ≤ p ≤ p′ < +∞ (the same holds for all
other classes of Weyl almost automorphic functions considered so far).

We have the following result:

Proposition 2.15. Suppose that p ≥ 1 and f ∈ Lp
loc(R : X) is Weyl p-almost automorphic or jointly

Weyl p-almost automorphic. Then f(·) is Weyl p-almost automorphic of type 2.

Proof. We will consider the class of Weyl p-almost automorphic functions, only. Let a real sequence
(sn) be given. Then there exist a subsequence (snk

) and a function f ∗ ∈ Lp
loc(R : X) such that (2.1)

holds. Let the numbers ε > 0 and t ∈ R be given. Then we have the existence of a positive integer
k0 ∈ N such that for every k ∈ N with k ≥ k0 there exists lk > 0 such that for every l ≥ lk we have
|ak,l| < ε/(2(2p − 1)), where

ak,l :=
1

2l

l∫
−l

∥∥f(t + snk
+ x
)− f ∗(t+ x)

∥∥p dx.
Let k′, k′′ ≥ k0. Then there exists a finite real number l0 := max(lk′ , lk′′) > 0 such that for every l ≥ l0
we have |ak′,l| < ε/(2(2p−1)) and |ak′′,l| < ε/(2(2p−1)). Using the inequality (a+b)p ≤ 2p−1(ap+bp),

a, b ≥ 0, the above simply implies (2.18) with the numbers k and m replaced therein with the numbers
k′ and k′′, which completes the proof.

The proof of Proposition 2.15 does not work for Weyl p-almost automorphic functions of type 1 and
we would like to ask:

Question 2.16. Suppose that p ≥ 1 and f : R → Y is (Stepanov p-almost automorphic) Weyl p-almost
automorphic functions of type 1. Is it true that f(·) is Weyl p-almost automorphic of type 2?

The following question is also meaningful:

Question 2.17. Suppose p ≥ 1. Construct, if possible, a jointly Weyl p-almost automorphic function
which is not (equi-)Weyl-p-almost periodic?

Before switching to the next section, we shall revisit the following examples from our recent paper
[26]:
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Example 2.18. Suppose that p ≥ 1. Let us recall that A. Haraux and P. Souplet have considered, in [23,
Theorem 1.1], the function f : R → R given by

f(t) :=
∞∑
n=1

1

n
sin2
( t

2n

)
, t ∈ R.

This function is bounded, uniformly continuous, uniformly recurrent, Besicovitch 1-unbounded and Weyl
p-almost automorphic for any finite exponent (cf. [26] for the notion and more details). By Proposition
2.11, we immediately get that f(·) is not Weyl p-almost automorphic of type 1 nor jointly Weyl p-almost
automorphic. On the other hand, an application of Proposition 2.15 shows that f(·) is Weyl p-almost
automorphic of type 2. In the present situation, we do not know to tell whether, for a given real sequence
(sn), there exists a subsequence (snk

) of (sn) such that the sequence of translations (f(· + snk
)) is a

Cauchy sequence in the Weyl metric (cf. also the remarkable example by H. Bohr [8, pp. 113–115, part
I] and [26, Theorem 1.4, Example 3], which will not be reexamined here).

Example 2.19. (J. de Vries, [12, point 6., p. 208; Figure 3.7.3, p. 208], M. Kostić [26, Theorem
1.5]) Let (pi)i∈N be a strictly increasing sequence of natural numbers such that pi|pi+1, i ∈ N and
limi→∞ pi/pi+1 = 0. Define the function fi : [−pi, pi] → [0, 1] by fi(t) := |t|/pi, t ∈ [−pi, pi] and
extend the function fi(·) periodically to the whole real axis; the obtained function, denoted by the same
symbol fi(·), is of period 2pi (i ∈ N). Set

f(t) := sup
{
fi(t) : i ∈ N

}
, t ∈ R. (2.19)

Then we know that the function f : R → R, given by (2.19), is bounded, uniformly continuous, uni-
formly recurrent and not asymptotically (Stepanov) almost automorphic ([26]). In this paper, we will
only prove the following new property of function f(·) :

lim sup
l→+∞

1

2l

l∫
−l

|1− f(x)| dx = lim sup
l→+∞

1

l

l∫
0

|1− f(x)| dx ≥ 1

4
. (2.20)

In order to do that, fix a positive integer i ∈ N and consider the straight line y = x/pi+1 and the straight
line y = [(−1)/pi](x − 2pi) connecting the points (pi, 1) and (2pi, 0). The intersection of these lines is
the point (2pipi+1/(pi + pi+1), 2pi/(pi + pi+1)). Set li := 2pipi+1/(pi + pi+1); then limi→+∞ li = +∞
and f(x) ≥ fi(x), x ∈ [pi, li]. This implies (2.20), because

1

li

li∫
0

|1− f(x)| dx ≥ 1

li

li∫
pi

|1− f(x)| dx

=
1

2

pi + pi+1

2pipi+1

[
2pipi+1

pi + pi+1
− pi

]
·
[
1− 2pi

pi + pi+1

]

=
1

2

pipi+1 − p2i
2pipi+1

·
[
1− 2pi

pi + pi+1

]
→ 1

4
, i → +∞.

Finally, we would like to ask whether the function f(·) is (equi-)Weyl-p-almost periodic [(jointly) Weyl
p-almost automorphic (of type 1, 2)] for some (each) finite exponent p ≥ 1?
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3. Multi-dimensional Weyl almost automorphy in Lebesgue spaces with variable exponent

The main aim of this section is to introduce and analyze multi-dimensional Weyl almost automorphy
in Lebesgue spaces with variable exponent. Here, we basically follow the approach used in our in-
vestigations of (equi-)Weyl-(p, φ,F)-almost periodic functions (see [19] and [29] for more details) and
our considerations from Section 2. Unless stated otherwise, we will always assume henceforth that
Ω := [−1, 1]n ⊆ Rn, p ∈ P(Rn) and F : (0,∞) × Rn → (0,∞); in contrast with the above-mentioned
researches, we will always assume here φ(x) ≡ x for simplicity.

We start by introducing the following notion:

Definition 3.1. Suppose that F : Rn × X → Y satisfies that for each x ∈ X, l > 0 and t ∈ Rn we
have F (t + u;x) ∈ Lp(u)(lΩ : Y ). Let for every B ∈ B and (bk = (b1k, b

2
k, · · ·, bnk)) ∈ R there exist a

subsequence (bkm = (b1km , b
2
km

, · · ·, bnkm)) of (bk) and a function F ∗ : Rn ×X → Y such that for each
x ∈ B, l > 0 and t ∈ Rn we have F ∗(t+ u;x) ∈ Lp(u)(lΩ : Y ), as well as:

(i)

lim
m→+∞ lim

l→+∞
F(l, t)

∥∥∥F (t+ u+ (b1km , · · ·, bnkm);x)− F ∗(t + u;x)
∥∥∥
Lp(u)(lΩ:Y )

= 0 (3.1)

and

lim
m→+∞ lim

l→+∞
F(l, t)

∥∥∥F ∗(t+ u− (b1km, · · ·, bnkm);x)− F (t + u;x)
∥∥∥
Lp(u)(lΩ:Y )

= 0, (3.2)

pointwise for all x ∈ B and t ∈ Rn, or

(ii)

lim
l→+∞

lim
m→+∞F(l, t)

∥∥∥F (t+ u+ (b1km , · · ·, bnkm);x)− F ∗(t + u;x)
∥∥∥
Lp(u)(lΩ:Y )

= 0

and

lim
l→+∞

lim
m→+∞F(l, t)

∥∥∥F ∗(t+ u− (b1km, · · ·, bnkm);x)− F (t + u;x)
∥∥∥
Lp(u)(lΩ:Y )

= 0,

pointwise for all x ∈ B and t ∈ R
n, or

(iii)

lim
(l,m)→+∞

F(l, t)
∥∥∥F (t+ u+ (b1km , · · ·, bnkm);x)− F ∗(t+ u;x)

∥∥∥
Lp(u)(lΩ:Y )

= 0

and

lim
(l,m)→+∞

F(l, t)
∥∥∥F ∗(t+ u− (b1km , · · ·, bnkm);x)− F (t + u;x)

∥∥∥
Lp(u)(lΩ:Y )

= 0,

pointwise for all x ∈ B and t ∈ Rn.

In the case that (i), resp. [(ii); (iii)], holds, then we say that the function F (·; ·) is Weyl-(F, p(u),R,B)-
multi-almost automorphic, resp. [Weyl-(F, p(u),R,B)-multi-almost automorphic of type 1; jointly Weyl-
(F, p(u),R,B)-multi-almost automorphic]. By AAW

F,p(u)
(R,B) (R

n ×X : Y ), resp. [AAW F,p(u),1
(R,B) (Rn ×X :

Y );
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AAW
F,p(u),j
(R,B) (Rn × X : Y )] we denote the collection of all Weyl-(F, p(u),R,B)-multi-almost auto-

morphic [Weyl-(F, p(u),R,B)-multi-almost automorphic of type 1; jointly Weyl-(F, p(u),R,B)-multi-
almost automorphic] functions F : Rn ×X → Y.

We omit the term “B” from the notation for the functions of the form

From our analysis of multi-dimensional Weyl almost peF : Rn → Y.riodicity carried out in [19], it
follows that the case p(u) ≡ p ∈ [1,∞) and F(l, t) ≡ l−n/p is the most important, when we say that the
function F : Rn ×X → Y is (jointly) Weyl p-(R,B)-multi-almost automorphic (of type 1).

In the next definition, we continue our analysis from Subsection 2.1 by introducing the following non-
trivial class of functions:

Definition 3.2. Suppose that ∅ �= W ⊆ R
n, F : (0,∞) × R

n → (0,∞) and F : Rn ×X → Y satisfies
that for each x ∈ X, l > 0 and t ∈ R

n we have F (t + u;x) ∈ Lp(u)(lΩ : Y ). If for every B ∈ B and
(bk = (b1k, b

2
k, · · ·, bnk)) ∈ R there exists a subsequence (bkm = (b1km, b

2
km

, · · ·, bnkm)) of (bk) such that for
each ε > 0, x ∈ B and t ∈ Rn there exists m0 ∈ N such that, for every m, m′ ∈ N with m ≥ m0 and
m′ ≥ m0, there exists l0 > 0 such that, for every l ≥ l0 and w ∈ lW, we have∥∥∥F(t+ u+ (b1km, · · ·, bnkm)− w;x

)
− F

(
t + u+ (b1km′ , · · ·, bnkm′ )−w;x

)∥∥∥
Lp(u)(lΩ:Y )

< ε/F(l, t− w), (3.3)

then we say that F (·; ·) is Weyl p(u)-(F,R,B,W )-multi-almost automorphic of type 2.

We can also introduce the concepts in which the parameters x ∈ B and t ∈ R are separated with
respect to the use of quantifiers, as well, but we will not go into further details concerning this notion. If
F : Rn → Y, then we omit the term B from the notation, as accepted before.

Remark 3.3. (i) Since the introduced classes of almost automorphic functions are translation invariant,
we do not need to follow the second approach, obeyed for the introduction of various classes of
(equi-)Weyl-[p, φ,F]-almost periodic functions. In this concept, we assume that Ω := [−1, 1]n ⊆
R

n, p ∈ P(Ω) and F : (0,∞) × R
n → (0,∞). We can consider the following notion: Suppose

that F : Rn × X → Y satisfies that for each x ∈ X, l > 0 and t ∈ R
n we have F (t + lu;x) ∈

Lp(u)(Ω : Y ). We say that the function F (·; ·) is Weyl-[F, p(u),R,B]-multi-almost automorphic if
and only if for every B ∈ B and (bk = (b1k, b

2
k, · · ·, bnk)) ∈ R there exist a subsequence (bkm =

(b1km , b
2
km

, · · ·, bnkm)) of (bk) and a function F ∗ : Rn ×X → Y such that for each x ∈ B, l > 0 and
t ∈ Rn we have F ∗(t+ lu;x) ∈ Lp(u)(Ω : Y ), as well as

lim
m→+∞ lim

l→+∞
F(l, t)

∥∥∥F (t+ lu + (b1km, · · ·, bnkm);x)− F ∗(t + lu;x)
∥∥∥
Lp(u)(Ω:Y )

= 0

and

lim
m→+∞ lim

l→+∞
F(l, t)

∥∥∥F ∗(t+ lu − (b1km , · · ·, bnkm);x)− F (t+ lu;x)
∥∥∥
Lp(u)(Ω:Y )

= 0,

pointwise for all x ∈ B and t ∈ Rn. For the sake of brevity, we will skip all related details
concerning this class of functions and related classes of functions defined in a similar way, with the
replaced limits or just one joint limit.
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(ii) Suppose that F : Rn × X → Y satisfies that for each x ∈ X, l > 0 and t ∈ Rn we have
F (t + u;x) ∈ Lp(u)(lΩ : Y ), as well as that, for every B ∈ B and (bk = (b1k, b

2
k, · · ·, bnk)) ∈ R,

there exist a subsequence (bkm = (b1km , b
2
km

, · · ·, bnkm)) of (bk) and a function F ∗ : Rn ×X → Y

such that for each x ∈ B, l > 0 and t ∈ Rn we have F ∗(t+ u;x) ∈ Lp(u)(lΩ : Y ), and

lim
m→+∞ lim

l→+∞
sup

t∈Rn,x∈B
F(l)

∥∥∥F (t+ u+ (b1km , · · ·, bnkm);x)− F ∗(t+ u;x)
∥∥∥
Lp(u)(lΩ:Y )

= 0.

Using the substitution t �→ t+ (b1km , · · ·, bnkm), t ∈ Rn we get that

lim
m→+∞ lim

l→+∞
sup

t∈Rn,x∈B
F(l)

∥∥∥F ∗(t+ u− (b1km , · · ·, bnkm);x)− F (t+ u;x)
∥∥∥
Lp(u)(lΩ:Y )

= 0.

Hence, F (·, ·) is Weyl-(F, p(u),R,B)-multi-almost automorphic. It is also worth noting that, in
the case that p(u) ≡ p ∈ [1,∞) and F(l) ≡ l−n/p, the assumptions used in this remark imply the
Weyl-(R,B, p)-normality of function F (·, ·) in the sense of [19, Definition 3.5].

We continue by providing the following illustrative examples:

Example 3.4. (J. Stryja [39, pp. 42–47]; see also [2, Example 4.28]) Define f : R → R by f(x) := 0 for
x ≤ 0, f(x) :=

√
n/2 if x ∈ (n− 2, n− 1] for some n ∈ 2N and f(x) := −√n/2 if x ∈ (n− 1, n] for

some n ∈ 2N. It is clear that the function f(·) is not Stepanov 1-bounded, which immediately implies that
the function f(·) is not asymptotically Stepanov 1-almost automorphic, not Weyl 1-almost automorphic
of type 1 and not jointly Weyl 1-almost automorphic; furthermore, arguing in the same way as in the
proof of Proposition 2.11, we get that the function f(·) is not Weyl-(F, 1,R)-multi-almost automorphic
if R is any collection of real sequences containing a strictly increasing sequence (sn) tending to plus
infinity. We already know that the function f(·) is not equi-Weyl-1-almost periodic as well as that the
function f(·) is Weyl-1-almost periodic and not Weyl 1-normal, as well as that for each n ∈ 2N we have

lim
l→+∞

1

2l
sup
t∈R

l∫
−l

∣∣f(t+ n+ x)− f(t+ x)
∣∣ dx = 0, (3.4)

so that the function f(·) is Weyl-(F, 1,R)-multi-almost automorphic with F(l, t) ≡ 1/l and R being the
collection of all real sequences (am) satisfying that am ∈ 2N for all m ∈ N. Now we will prove that the
function f(·) is not Weyl-(F, 1,R)-multi-almost automorphic provided that there exists a real sequence
(sn) from R which contains only a finite number of even numbers; in particular, the function f(·) is
not Weyl 1-almost automorphic. Towards this end, it suffices to show that, for every fixed real number
ω /∈ 2Z, we have

lim
l→+∞

1

2l

l∫
0

∣∣f(x+ ω)− f(x)
∣∣ dx = +∞, (3.5)

where ω′ ∈ 2Z denotes the nearest even number to ω. Without loss of generality, we may assume that
ω′ < ω so that h := ω − ω′ ∈ (0, 1]. Keeping in mind the triangle inequality and the estimate (3.4) with
t = 0 and n = ω′, we only need to show that

lim
l→+∞

1

2l

l∫
0

∣∣∣f(x+ ω)− f
(
x+ ω′)∣∣∣ dx = +∞. (3.6)
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This follows from the following calculation (l > 2 + |ω′|):

1

2l

l∫
0

∣∣∣f(x+ ω)− f
(
x+ ω′)∣∣∣ dx

=
1

2l

ω′+l∫
ω′

∣∣f(x+ h)− f(x)
∣∣ dx

= 2
ω′ + l

l

1

2(ω′ + l)

ω′+l∫
0

∣∣f(x+ h)− f(x)
∣∣ dx− 1

2l

ω′∫
0

∣∣f(x+ h)− f(x)
∣∣ dx

≥ 2
ω′ + l

l

[
4

3
h

√⌊ l + ω′

2

⌋
− 1

]
− 1

2l

ω′∫
0

∣∣f(x+ h)− f(x)
∣∣ dx → +∞, l → +∞,

where the estimate used above follows by applying the estimate proved on [2, p. 149, l. 7-9], which
is valid for h ∈ (0, 1] and L ≥ 2. Using a similar argumentation involving the estimates (3.5)-(3.6), it
follows that the function f(·) is not 1-(1/l,R, {0})-multi-almost automorphic provided that there exists
a sequence (sn) from R satisfying that, for every its subsequence (snk

), there exist two arbitrarily large
positive integers k′ and k′′ such that the difference snk′ − snk′′ is not an even number; in particular, the
function f(·) is not Weyl 1-almost automorphic of type 2. It is also worth noting that the function f(·)
is not Besicovitch 1-bounded, not Besicovitch 1-almost periodic and has no finite mean value (cf. also
Theorem 2.10 above).

Example 3.5. (i) Similarly as in the one-dimensional case, it can be proved that for any compact set
K ⊆ Rn and for any p ∈ P(Rn) we have that the function χK(·) belongs to any of the function
spaces introduced in Definition 3.1 and Definition 3.2 with F(t, t) ≡ l−σ, with σ > 0; see also [19,
Example 2.7].

(ii) Suppose now that F (t) := χ[0,∞)n(t), t ∈ Rn. Let R denote the collection of all sequences in
Rn, and let 1 ≤ p < ∞. Arguing as in [19, Example 2.8], we can prove that the function F (·)
is Weyl-(F, p,R)-multi-almost automorphic with F(l, t) ≡ l−σ if and only if σ > (n − 1)/p, as
well as that there is no σ > 0 such that F (·) is Weyl-(F, p,R)-multi-almost automorphic with
F(l, t) ≡ l−σ. On the other hand, our analysis from Example 2.13 can be repeated with minor
modifications in order to see that for each real number σ > 0 the functionF (·) is Weyl p-(F,R,Rn)-
multi-almost automorphic with F(l, t) ≡ l−σ . An insignificant modification of the construction
established in the corresponding part of the proof of Theorem 2.12 shows that the function F (·)
is also Weyl-(F, p,R)-multi-almost automorphic of type 1 for any function F(l) satisfying that
liml→+∞ F(l) = 0.

Example 3.6. The following example is a simple modification of [9, Example 2.15(i)] and [19, Example
3.1]. Suppose that 1 ≤ p < ∞, the complex-valued mapping t �→ gj(t) ∈ Y, t ∈ R is essentially
bounded and jointly Weyl-(Fj , p,Rj)-almost automorphic, where Rj denotes the collection of all real
sequences (1 ≤ j ≤ n). Define

F
(
t1, · · ·, t2n

)
:=

n∏
j=1

[
gj
(
tj+n

)− gj
(
tj
)]
, where tj ∈ R for 1 ≤ j ≤ 2n,
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and Λ′ := {(τ, τ) : τ ∈ Rn}. Then we know there exists a finite constant M > 0 such that∥∥∥F(t1 + τ1, · · ·, t2n + τ2n
)− F

(
t1, · · ·, t2n

)∥∥∥
Y

≤ M

{∥∥∥g1(tn+1 + τ1
)− g1

(
tn+1

)∥∥∥+ ∥∥∥g1(t1 + τ1
)− g1

(
t1
)∥∥∥+ · · ·

+
∥∥∥gn(t2n + τn

)− gn
(
t2n
)∥∥∥+ ∥∥∥gn(tn + τn

)− gn
(
tn
)∥∥∥
}
,

for any (t1, · · ·, t2n) ∈ R2n and (τ1, · · ·, τ2n) ∈ Λ′. Suppose that c ∈ (0,∞), F : (0,∞)× Rn → Y and

n∑
j=1

[
1

Fj(l, tj)
+

1

Fj(l, tj+n)

]
≤ c

F (l, t1, · · ·, t2n) , l > 0,
(
t1, · · ·, t2n

) ∈ R
2n.

Using the corresponding definition and the above estimates, it follows that the function F (·) is jointly
Weyl-(F, p,R)-almost automorphic, where R denotes the collection of all sequences in Λ′.

Immediately from the above definitions, we have the following simple proposition which can be clari-
fied for all other classes of functions introduced above:

Proposition 3.7. (i) Suppose that c ∈ C and F (·; ·) is Weyl-(F, p(u),R,B)-multi-almost automorphic.
Then cF (·; ·) is Weyl-(F, p(u),R,B)-multi-almost automorphic.

(ii) Suppose that τ ∈ Rn, x0 ∈ X, the function F(·, ·) does not depend on the second argument,
and F (·; ·) is Weyl-(F, p(u),R,B)-multi-almost automorphic. Then F (· + τ ; · + x0) is Weyl-
(F, p(u),R,B)-multi-almost automorphic, where Bx0 ≡ {−x0 +B : B ∈ B}.

(iii) (a) Suppose that c2 ∈ C\{0}, and F (·; ·) is Weyl-(F, p(u),R,B)-multi-almost automorphic. Then
F (·; c2·) is Weyl-(F, p(u),R,B)-multi-almost automorphic, where Bc2 ≡ {c−1

2 B : B ∈ B}.
(b) Suppose that c1 ∈ C \ {0}, c2 ∈ C \ {0}, and F (·; ·) is Weyl-(F, p(u),R,B)-multi-almost

automorphic, with some constant exponent p ≥ 1. Then the function F (c1·; c2·) is Weyl-
(Fc1, p,R,B)-multi-almost automorphic, where Rc1 ≡ {c−1

1 b : b ∈ R} and Fc1(l, t) ≡
F(l, c1t).

We have the following simple result, which can be also clarified for all other classes of functions
introduced in this section so far:

Proposition 3.8. Suppose thatF (·; ·) is Weyl-(F, p(u),R,B)-multi-almost automorphic and A ∈ L(Y, Z).

Then (A ◦ F )(·; ·) is Weyl-(F, p(u),R,B)-multi-almost automorphic.

Proof. Let x ∈ X, t ∈ Rn, B ∈ B and (bk = (b1k, b
2
k, · · ·, bnk)) ∈ R be fixed. Then we know that

F (t + u;x) ∈ Lp(u)(lΩ : Y ), so that there exists a finite real number λ > 0 such that∫
lΩ

ϕp(u)

(
‖F (t+ u;x)‖Y

λ

)
du ≤ 1.
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This easily implies that∫
lΩ

ϕp(u)

(
‖A(F (t + u;x))‖Z

λ′

)
du ≤ 1,

with λ′ = ‖A‖ · λ. Hence, A(F (t + u;x)) ∈ Lp(u)(lΩ : Z). Further on, we know that there exist a
subsequence (bkl = (b1kl, b

2
kl
, · · ·, bnkl)) of (bk) and a function F ∗ : Rn × X → Y such that for each

x ∈ X and t ∈ Rn we have F ∗(t + u;x) ∈ Lp(u)(lΩ : Y ), as well as that (3.1)-(3.2) hold. By the
foregoing, we have that A(F ∗(t + u;x)) ∈ Lp(u)(lΩ : Z). Using Lemma 1.2, it can be simply verified
that (3.1)-(3.2) hold with the functions F and F ∗ replaced therein with the function A ◦ F and A ◦ F ∗,
respectively, finishing the proof of the proposition.

3.1. Weyl p(u)-(F,R,B,W )-multi-almost automorphy of type 2 and jointly Weyl p(u)-(F,R,B,W )-
multi-almost automorphy

In this subsection, we investigate the Weyl p(u)-(F,R,B,W )-multi-almost automorphic functions of
type 2 and jointly Weyl p(u)-(F,R,B,W )-multi-almost automorphic functions, primarily from their
invaluable importance in applications.

In Definition 3.2, we can also assume that the set W depends on l but the situation is more complicated
then. In Subsection 2.1 we have W = {0}; case W �= {0} is also important to be analyzed, as the
following result about the convolution invariance of Weyl p(u)-(R,B,W )-multi-almost automorphy of
type 2 shows (the choice of sets W1 = (2Z + 1)n and W2 ⊆ (2Z)n strongly depends on the choice of
region Ω = [−1, 1]n here; the things certainly can be arranged in a slightly different, generalized way,
the reader may try to make this more precise):

Theorem 3.9. Suppose that h ∈ L1(Rn) and F : Rn ×X → Y is Weyl p(u)-(F,R,B, (2Z+1)n)-multi-
almost automorphic of type 2. Let p1, q ∈ P(Rn), let 1/p(u) + 1/q(u) ≡ 1, and let F1 : (0,∞) ×
Rn → (0,∞). Suppose that, for every x ∈ X, we have supt∈Rn ‖F (t;x)‖Y < ∞, as well as that
∅ �= W2 ⊆ (2Z)n and for every t ∈ Rn there exists l1 > 0 such that, for every l ≥ l1 and w ∈ lW2, we
have ∫

lΩ

ϕp1(u)

(
2F1(l, t + w)

∑
k∈l(2Z+1)n

∥∥h(u+ k − v)
∥∥
Lq(v)(lΩ)

F(l, t − k + w)

)
du ≤ 1. (3.7)

Then the function h ∗ F : Rn ×X → Y, defined by

(h ∗ F )(t;x) :=

∫
Rn

h(σ)F (t− σ;x) dσ, t ∈ R
n, x ∈ X, (3.8)

is Weyl p1(u)-(F1,R,B,W2)-multi-almost automorphic of type 2.

Proof. It can be simply verified that the function (h ∗ F )(·; ·) is well defined because we have assumed
that, for every x ∈ X, we have supt∈Rn ‖F (t;x)‖Y < ∞. By our assumption, for every B ∈ B and
(bk = (b1k, b

2
k, · · ·, bnk)) ∈ R, there exists a subsequence (bkm = (b1km, b

2
km

, · · ·, bnkm)) of (bk) such that
for each ε > 0, x ∈ B and t ∈ Rn there exists m0 ∈ N such that, for every m, m′ ∈ N with m ≥ m0

and m′ ≥ m0, there exists l ≥ l0 such that, for every l ≥ l0 and w ∈ l(2Z + 1)n (3.3) holds with
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W ≡ W1 ≡ (2Z+ 1)n. Let l ≥ max(l0, l1) and w ∈ lW2. Since the mapping ϕp1(u)(·) is monotonically
increasing, we have∥∥(h ∗ F )(t+ w + bkm + u;x)− (h ∗ F )(t + w + bkm′ + u;x)

∥∥
Lp1(u)(lΩ:Y )

=
∥∥∥∫
Rn

h(s)
[
F (t+ w + bkm + u− s;x)− F (t + w + bkm′ + u− s;x)

]
ds
∥∥∥
Lp1(u)(lΩ:Y )

≤
(∫
Rn

|h(s)| ·
∥∥∥F (t + w + bkm + u− s;x)− F (t + w + bkm′ + u− s;x)

∥∥∥
Y
ds

)
Lp1(u)(lΩ)

,

which is equal to the infimum of all positive real numbers λ > 0 such that∫
lΩ

ϕp1(u)

(∫
Rn |h(s)| ·

∥∥F (t+ w + bkm + u− s;x)− F (t + w + bkm′ + u− s;x)
∥∥
Y
ds

λ

)
du≤1.

By definition of norm in Lp1(u)(lΩ), it suffices to show that the last estimate holds with λ = ε/F1(l, t+

w). This follows from the next computation involving the Hölder inequality (see Lemma 1.1(i)) as well
as our assumptions W2 ⊆ (2Z)n and (3.7):

∫
lΩ

ϕp1(u)

(∫
Rn |h(s)| · ∥∥F (t + w + bkm + u− s;x)− F (t+ w + bkm′ + u− s;x)

∥∥
Y
ds

ε/F1(l, t+ w)

)
du

=

∫
lΩ

ϕp1(u)

(∫
Rn |h(s+ u)| · ∥∥F (t+ w + bkm − s;x)− F (t+ w + bkm′ − s;x)

∥∥
Y
ds

ε/F1(l, t + w)

)
du

=

∫
lΩ

ϕp1(u)

( ∑
k∈l(2Z+1)n

∫
k−lΩ |h(s+ u)| · ∥∥F (t+ w + bkm − s;x)− F (t + w + bkm′ − s;x)

∥∥
Y
ds

ε/F1(l, t + w)

)
du

≤
∫
lΩ

ϕp1(u)

( ∑
k∈lW1

∫
lΩ

|h(u− v + k)| · ∥∥F (t+ w + bkm + v − k;x)− F (t+ w + bkm′ + v − k;x)
∥∥
Y
dv

ε/F1(l, t + w)

)
du

≤
∫
lΩ

ϕp1(u)

(
2
∑

k∈lW1

∥∥h(u+ k − v)
∥∥
Lq(v)(lΩ)

· (ε/F(l, t − k + w)
)

ε/F1(l, t + w)

)
du

≤
∫
lΩ

ϕp1(u)

(
2F1(l, t +w)

∑
k∈l(2Z+1)n

∥∥h(u+ k − v)
∥∥
Lq(v)(lΩ)

F(l, t − k + w)

)
du ≤ 1.

Remark 3.10. In contrast with the one-dimensional case, the set {l ≥ l0 : t − l(2Z + 1)n} cannot be
bounded in Rn for any t ∈ Rn, as easily approved (n ≥ 2). But, even in the one-dimensional setting,
the requirements of Theorem 3.9 do not imply the equi-Weyl-p-almost periodicity of function under our
consideration (see Example 2.13). However, it is not clear whether the requirements of Theorem 3.9
imply the Weyl-p-almost periodicity of considered function or not.

Concerning the invariance of Weyl p1(u)-(F1,R,W )-multi-almost automorphy of type 2 under the
actions of infinite convolution products, we will only investigate the one-dimensional case for simplicity
(the statements of Theorem 3.11 can be also formulated in the multi-dimensional setting, with minor
complications; see [9]-[10] for more details):
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Theorem 3.11. Suppose that p, q ∈ P(R), F : (0,∞) × X → (0,∞), F1 : (0,∞) × X → (0,∞),

∅ �= W2 ⊆ 2Z, (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family and f : R → X is a
measurable function such that

t∫
−∞

‖R(t− s)‖ · ‖f(s)‖ ds < ∞, t ∈ R.

If f(·) is Weyl p(u)-(F,R, 2Z + 1)-multi-almost automorphic of type 2 and condition

l∫
−l

ϕp(u)

(
2F1(l, t− w)

[∑
m∈N

∥∥R(−v + 2ml − u)
∥∥
Lq(v)[−l,l]

F(l, t − w − 2ml)

+

∥∥R(−v + u)
∥∥
Lq(v)[−l,l]

F(l, t− w)

])
du ≤ 1, (3.9)

holds, then the function F (·), given by (2.7), is Weyl p(u)-(F1,R,W2)-multi-almost automorphic of
type 2.

Proof. It is clear that the function F (·), given by (2.7), is well defined since the integral defining this
function is absolutely convergent. Let (bk) ∈ R. Then we know that there exists a subsequence (bkm)

of (bk) such that for each ε > 0 and t ∈ R there exists m0 ∈ N such that, for every m, m′ ∈ N with
m ≥ m0 and m′ ≥ m0, there exists l ≥ l0 such that, for every l ≥ l0 and w ∈ l(2Z+ 1) (3.3) holds with
W ≡ W1 ≡ (2Z + 1) and n = 1. Let l ≥ max(l0, l1) and w ∈ lW2. Then the final conclusion follows
similarly as in Theorem 3.9, by using (3.9) and the next estimate:

l∫
−l

ϕp(u)

(
F1(l, t− w)

∞∫
0

‖R(s)‖

× ∥∥f(t+ u+ bkm − w − s)− f(t+ u+ bkm′ − w − s)
∥∥
Y
ds

)
du ≤ 1.

In order to see the last estimate is valid, we first conclude that:

l∫
−l

ϕp(u)

(
F1(l, t− w)

∞∫
0

‖R(s)‖

×
∥∥∥f(t+ u+ bkm − w − s)− f(t+ u+ bkm′ − w − s)

∥∥∥
Y
ds

)
du

=

l∫
−l

ϕp(u)

(
F1(l, t− w)

u∫
−l

‖R(−s+ u)‖

×
∥∥∥f(t+ bkm − w + s)− f(t+ bkm′ − w + s)

∥∥∥
Y
ds

+
∞∑

m=1

l∫
−l

∥∥R(−v + 2ml − u)
∥∥·∥∥∥f(t+ bkm − w − 2ml + v)− f(t+ bkm′ − w − 2ml + v)

∥∥∥
Y

)
du.
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After that, we can apply the Hölder inequality, our assumption on the function f(·) and the estimate
(3.9).

It is worth noting that an analogue of Theorem 3.9 can be formulated for the following slight general-
ization of the class introduced in Definition 3.1(iii):

Definition 3.12. Suppose that ∅ �= W ⊆ Rn and F : Rn ×X → Y satisfies that for each x ∈ X, l > 0

and t ∈ Rn we have F (t + u;x) ∈ Lp(u)(lΩ : Y ). Let for every B ∈ B and (bk = (b1k, b
2
k, · · ·, bnk)) ∈ R

there exist a subsequence (bkm = (b1km , b
2
km

, · · ·, bnkm)) of (bk) and a function F ∗ : Rn ×X → Y such
that for each x ∈ B, l > 0 and t ∈ Rn we have F ∗(t+ u;x) ∈ Lp(u)(lΩ : Y ), as well as for each ε > 0,

x ∈ B and t ∈ R
n, there exists p > 0 such that, for every l ∈ [p,+∞), m ∈ N with m ≥ p and w ∈ lW,

we have

F(l, t − w)
∥∥∥F (t+ u+ (b1km , · · ·, bnkm)− w;x)− F ∗(t+ u− w;x)

∥∥∥
Lp(u)(lΩ:Y )

< ε (3.10)

and

F(l, t − w)
∥∥∥F ∗(t+ u− (b1km , · · ·, bnkm)− w;x)− F (t+ u− w;x)

∥∥∥
Lp(u)(lΩ:Y )

< ε, (3.11)

then we say that the function F (·; ·) is jointly Weyl (F, p(u),R,W )-multi-almost automorphic.

It is clear that Lemma 1.1(ii) implies that any jointly Weyl (Fq, q(u),R,W )-multi-almost automorphic
function F (·; ·) is jointly Weyl (Fp, p(u),R,W )-multi-almost automorphic, provided that p, p′ ∈ P(Rn),

1 ≤ p ≤ p′ a.e. on Rn and Fp(l, t) := (1 + ln)−1Fq(l, t) for l > 0 and t ∈ Rn. Furthermore, if we
assume that for each sequence belonging to R any its subsequence belongs to R, then the jointly Weyl-
(F, p(u),R,W )-multi-almost automorphic functions form a vector space with the usual operations (the
same holds for all other classes of functions introduced in this section).

In actual fact, we have the following result:

Theorem 3.13. Suppose that h ∈ L1(Rn) and F : Rn×X → Y is jointly Weyl p(u)-(F,R,B,Zn)-multi-
almost automorphic. Let p1, q ∈ P(Rn), let 1/p(u) + 1/q(u) ≡ 1, and let F1 : (0,∞)× Rn → (0,∞).

Suppose that, for every x ∈ X, we have supt∈Rn ‖F (t;x)‖Y < ∞, as well as that for every t ∈ Rn there
exists l1 > 0 such that, for every l ≥ l1 and w ∈ lZn, the estimate (3.7) holds. If, for every compact set
K ⊆ Rn, x ∈ X and l > 0, there exists a finite real constant c > 0 such that

∥∥h(u− v)
∥∥
Lq(v)(lΩ)

≤
(
F(l, 0)−1 + sup

t∈Rn

∥∥F (t;x)
∥∥
Y
· ∥∥1∥∥

Lp(u)(lΩ)

)−1

, u ∈ K, (3.12)

then h ∗ F : Rn ×X → Y (cf. (3.8)), is a well defined, jointly Weyl p1(u)-(F1,R,B,Zn)-multi-almost
automorphic function.

Proof. The proof of theorem is very similar to the proof of Theorem 3.9 and we will only emphasize the
most important differences. First of all, it is clear that the function h ∗ F : Rn ×X → Y is well defined.
Fix B ∈ B and (bk = (b1k, b

2
k, · · ·, bnk)) ∈ R. Then there exists a subsequence (bkm = (b1km , b

2
km

, · · ·, bnkm))
of (bk) and a function F ∗ : Rn × X → Y such that for each x ∈ B, l > 0 and t ∈ Rn we have
F ∗(t + u;x) ∈ Lp(u)(lΩ : Y ), as well as for each ε > 0, x ∈ B and t ∈ Rn, there exists p > 0 such
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that, for every l ∈ [p,+∞), m ∈ N with m ≥ p and w ∈ lW, we have (3.10) and (3.11). Let t ∈ Rn and
x ∈ B be fixed; we will prove that the value (h ∗ F ∗)(t;x) is well defined. It suffices to prove that∫

Rn

|h(t− s)|∥∥F ∗(s;x)
∥∥
Y
ds := lim

l→+∞

∫
lΩ

|h(t− s)|∥∥F ∗(s;x)
∥∥
Y
ds < +∞.

Since the mapping l �→ ∫
lΩ |h(t − s)|‖F ∗(s;x)‖Y ds, l > 0 is monotonically increasing, it suffices to

show its boundedness for l > 0. This follows from the fact that F ∗(u;x) ∈ Lp(u)(lΩ : Y ) for all l > 0

(this is a consequence of (3.10) with t = ω = 0 and our assumption that, for every x ∈ X, we have
supt∈Rn ‖F (t;x)‖Y < ∞), the Hölder inequality and the assumption that, for every u ∈ Rn and l > 0,

there exists a finite real constant c > 0 such that (3.12) holds. The remainder of proof can be given by
copying the corresponding part of proof of Theorem 3.9.

In order to relax our exposition, we will only note that an analogue of Theorem 3.11 can be formulated
for jointly Weyl p(u)-(F,R,W )-multi-almost automorphic functions following the method proposed in
the proofs of Theorem 3.11 and Theorem 3.13, by assuming condition of type (3.12) for the resolvent
family (R(t))t>0 ⊆ L(X,Y ) under consideration. Details can be left to the readers.

Concerning the pointwise products of Weyl p(u)-(F,R,B,W )-multi-almost automorphic functions of
type 2 and jointly Weyl p(u)-(F,R,B,W )-multi-almost automorphic functions with the scalar-valued
functions of the same type, we will clarify the following result, only:

Proposition 3.14. Assume that for each sequence belonging to R any its subsequence belongs to R.

(i) Suppose that ∅ �= W ⊆ Rn, p ∈ P(Rn), g : (0,∞) × Rn → (0,∞), F : (0,∞) × Rn → (0,∞),

f : Rn → C is essentially bounded and Weyl p(u)-(g,R,W )-multi-almost automorphic of type
2, F : Rn ×X → Y is Weyl p(u)-(F,R,B,W )-multi-almost automorphic of type 2 and for each
x ∈ X we have supt∈Rn ‖F (t;x)‖Y < ∞. Suppose that F1 : (0,∞)× Rn → (0,∞) satisfies that
there exist real numbers c > 0 and l0 > 0 such that

1

F(l, t)
+

1

g(l, t)
≤ c

F1(l, t)
, l ≥ l0, t ∈ R

n. (3.13)

Then the function F1(t;x) := f(t) · F (t;x), t ∈ Rn, x ∈ X is Weyl p(u)-(F1,R,B,W )-multi-
almost automorphic of type 2.

(ii) Suppose that ∅ �= W ⊆ Rn, p, q ∈ P(Rn), 1/p(u) + 1/q(u) ≡ 1, g : (0,∞)× Rn → (0,∞), F :

(0,∞)×R
n → (0,∞), f : Rn → C is essentially bounded and jointly Weyl p(u)-(g,R,W )-multi-

almost automorphic, F : Rn×X → Y is jointly Weyl q(u)-(F,R,B,W )-multi-almost automorphic
and for each x ∈ X we have supt∈Rn ‖F (t;x)‖Y < ∞. Suppose that F1 : (0,∞)× Rn → (0,∞)

satisfies that for each x ∈ X and t ∈ Rn there exist real numbers c > 0 and l0 > 0 such that, for
every l ≥ l0, we have:

F1(l, t− w)

[
1

g(l, t− w)
sup
t∈Rn

∥∥F (t;x)
∥∥
Y

∥∥1∥∥
Lq(u)(lΩ)

+
1

F(l, t− w)

(
1

g(l, t− w)
+ ‖f‖∞ · ∥∥1∥∥

Lp(u)(lΩ)

)]
≤ c. (3.14)

Then the function F1(t;x) := f(t) · F (t;x), t ∈ Rn, x ∈ X is jointlyWeyl 1-(F1,R,B,W )-
multi-almost automorphic.
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Proof. Let B ∈ B and (bk = (b1k, b
2
k, · · ·, bnk)) ∈ R be given. Since we have assumed that, for every

sequence which belongs to R, any its subsequence also belongs to R, by the corresponding definition we
get the existence of a subsequence (bkm = (b1km , b

2
km

, · · ·, bnkm)) of (bk) such that for each ε > 0, x ∈ B

and t ∈ Rn there exists m0 ∈ N such that, for every m, m′ ∈ N with m ≥ m0 and m′ ≥ m0, there exists
l ≥ l0 such that, for every l ≥ l0 and w ∈ lW, we have∥∥∥f(t+ u+ (b1km , · · ·, bnkm)− w

)
− f
(
t+ u+ (b1km′ , · · ·, bnkm′ )−w

)∥∥∥
Lp(u)(lΩ:Y )

< ε/g(l, t− w), (3.15)

and (3.3). Since we have assumed that the function f(·) is essentially bounded as well as that for each
x ∈ X we have supt∈Rn ‖F (t;x)‖Y < ∞, the estimates (3.3), (3.13)-(3.15) and the decomposition

F1

(
t+ u+ (b1km , · · ·, bnkm)− w;x

)
− F1

(
t+ u+ (b1km′ , · · ·, bnkm′ )− w

)
= f

(
t + u+ (b1km , · · ·, bnkm)− w

)
×
[
F
(
t+ u+ (b1km, · · ·, bnkm)− w;x

)
− F

(
t + u+ (b1km′ , · · ·, bnkm′ )− w;x

)]
+ F

(
t+ u+ (b1km′ , · · ·, bnkm′ )− w;x

)
×
[
f
(
t+ u+ (b1km , · · ·, bnkm)− w

)
− f
(
t+ u+ (b1km′ , · · ·, bnkm′ )− w

)]
simply imply that F1(·; ·) is Weyl p(u)-(F1,R,B,W )-multi-almost automorphic of type 2. The second
part of proposition follows from a similar decomposition with limit functions, by applying the Hölder
inequality, the estimate (3.14) and a simple estimate for the function f ∗(·) obtained from (3.10).

The interested reader may try to reformulate the statement of [19, Theorem 3.4] for Weyl p(u)-
(F,R,B,W )-multi-almost automorphic functions of type 2 and jointly Weyl p(u)-(F,R,B,W )-multi-
almost automorphic functions.

Finally, we would like to note that the inclusions presented in Section 2 and this section continue
to hold in the multi-dimensional setting, for Stepanov p(u)-(R,B)-multi-almost automorphic functions
([32], work-in-progress) and various classes of multi-dimensional Weyl almost automorphic functions
considered here; details will appear in [25].

4. Applications to the abstract Volterra integro-differential equations

In this section, we will present some applications of the obtained theoretical results in the qualitative
analysis of solutions for various classes of the abstract Volterra integro-differential equations in Banach
spaces.

1. Besides many other applications, we would like to note that Proposition 2.8 takes effect in the
qualitative analysis of jointly Weyl-1-almost automorphic solutions of the following fractional Poisson
heat equation Dγ

t,+[m(x)v(t, x)] = (Δ − b)v(t, x) + f(t, x), t ∈ R, x ∈ Ω; v(t, x) = 0, v(t, x) ∈
[0,∞)×∂Ω in the space X := Lp(Ω), where Ω is a bounded domain in Rn, b > 0, m(x) ≥ 0 a.e. x ∈ Ω,
m ∈ L∞(Ω), γ ∈ (0, 1) and 1 < p < ∞; in the case of consideration of general exponent p ∈ P(R), we
can also apply Theorem 3.11. See [24] for more details.
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2. Let Y be one of the spaces Lp(Rn), C0(R
n) or BUC(Rn), where 1 ≤ p < ∞. It is well known that

the Gaussian semigroup

(G(t)F )(x) :=
(
4πt
)−(n/2)

∫
Rn

F (x− y)e−
|y|2
4t dy, t > 0, f ∈ Y, x ∈ R

n,

can be extended to a bounded analytic C0-semigroup of angle π/2, generated by the Laplacian ΔY

acting with its maximal distributional domain in Y ; see [4, Example 3.7.6] for more details. Suppose
now that the number t0 > 0 is fixed as well as that F : Rn → C is both essentially bounded and Weyl
p-(F,R, (2Z + 1)n)-multi-almost automorphic of type 2, where p(u) ≡ p ∈ [1,∞) and F : (0,∞) →
(0,∞). Let p1 ∈ [1,∞), let 1/p + 1/q = 1, and let F1 : (0,∞) → (0,∞). Then the function x �→
(G(t0)F )(x), x ∈ Rn is essentially bounded. Suppose, further, that ∅ �= W2 ⊆ (2Z)n and for every
t ∈ Rn there exists l1 > 0 such that, for every l ≥ l1 and w ∈ lW2, we have

(
4πt0

)−(n/2)

(
F1(l)

F(l)

)p1 ∫
lΩ

[ ∑
k∈l(2Z+1)n

(∫
lΩ

e
− q|(u+k−v)|2

4t0 dv

)1/q]p1
du ≤ 1. (4.1)

Then Theorem 3.9 implies that the function x �→ (G(t0)F )(x), x ∈ Rn is Weyl p1-(F1,R,W2)-multi-
almost automorphic of type 2. Here we only want to note that the series in (4.1) converges because, for
every u ∈ lΩ, v ∈ lΩ and k ∈ l(2Z + 1)n, we have |u+ k − v| ≥ |k − 2l

√
n|. Note that Theorem 3.13

is also applicable here.

3. (cf. also the third application in [19, Section 4]) Suppose that Y := Lr(Rn) for some r ∈ [1,∞) and
A(t) := Δ + a(t)I , t ≥ 0, where Δ is the Dirichlet Laplacian on Lr(Rn), I is the identity operator on
Lr(Rn) and a ∈ L∞([0,∞)). Then the evolution system (U(t, s))t≥s≥0 ⊆ L(Y ) generated by the family
(A(t))t≥0 exists and is given by U(t, t) := I for all t ≥ 0 and

[U(t, s)F ](u) :=

∫
Rn

K(t, s,u,v)F (v) dv, F ∈ Lr(Rn), t > s ≥ 0,

where

K(t, s,u,v) := (4π(t− s))−
n
2 e

∫ t
s
a(τ) dτ exp

(
−|u− v|2
4(t− s)

)
, t > s, u, v ∈ R

n.

Under certain assumptions, a unique mild solution of the abstract Cauchy problem (∂/∂t)u(t, x) =

A(t)u(t, x), t > 0; u(0, x) = F (x) is given by u(t, x) := [U(t, 0)F ](x), t ≥ 0, x ∈ Rn. Suppose now
that F ∈ Lr(Rn) and F (·) is Weyl p-(F,R, (2Z + 1)n)-multi-almost automorphic of type 2, where 1 ≤
p < ∞ and the function F(l, t) ≡ F(l) does not depend on t. Let 1/p+ 1/q = 1, let ε > 0 be given, and
let (bk = (b1k, b

2
k, ···, bnk)) ∈ R. Then we know that there exists a subsequence (bkm = (b1km , b

2
km

, ···, bnkm))
of (bk) such that for each ε > 0 and t ∈ Rn there exists m0 ∈ N such that, for every m, m′ ∈ N with
m ≥ m0 and m′ ≥ m0, there exists l0 > 0 such that, for every l ≥ l0 and w ∈ l(2Z)n, we have (3.3). Let
a number t0 > 0 be fixed. Arguing as in [19], we get that there exists a finite constant ct0 > 0 such that:∣∣∣∣∣u

(
t0, t+ u+ (b1km , · · ·, bnkm)− w

)
− u
(
t0, t+ u+ (b1km′ , · · ·, bnkm′ )− w

)∣∣∣∣∣
≤ ct0

∫
Rn

e−
|u−v|2

4t0

∣∣∣F(v + t+ (b1km , · · ·, bnkm)− w
)− F

(
v + t + (b1km′ , · · ·, bnkm′ )− w

)∣∣∣ dv
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= ct0
∑

k∈l(2Z+1)n

∫
k+l[−1,1]n

e−
|u−v|2

4t0

×
∣∣∣F(v + t + (b1km , · · ·, bnkm)− w

)− F
(
v + t+ (b1km′ , · · ·, bnkm′)− w

)∣∣∣ dv
≤ ct0

∑
k∈lZn

∥∥∥e− |u−·|2
4t0

∥∥∥
Lq(k+l[−1,1]n)

×
∥∥∥F(·+ t+ (b1km , · · ·, bnkm)− w − k

)− F
(·+ t+ (b1km′ , · · ·, bnkm′ )− w − k

)∥∥∥
Lp(l[−1,1]n)

≤ ct0
ε

F(l)

∑
k∈lZn

∥∥∥e− |u−·|2
4t0

∥∥∥
Lq(k+l[−1,1]n)

:= ct0
ε

F(l)
G(l,u).

Let 1 ≤ p′ < ∞. Define the function F1(·) by

F1(l, t) :=
F(l)(∫

l[−1,1]n G(l,u)p′ du
)1/p′ , l > 0.

By the foregoing, we get that the mapping x �→ u(t0, x), x ∈ Rn is Weyl p′-(F1,R, (2Z)
n)-multi-almost

automorphic of type 2.

5. Conclusions and the final remarks

In this paper, we have reconsidered the notion of Weyl p-almost automorphy introduced by S. Abbas
[1] in 2012 and proposed several new concepts of Weyl p-almost automorphy: the Weyl p-almost au-
tomorphy of type 1, the Weyl p-almost automorphy of type 2 and the joint Weyl p-almost automorphy
(1 ≤ p < ∞). Furthermore, we have introduced and analyzed the multi-dimensional analogues of these
concepts by using the definitions and results from the theory of Lebesgue spaces with variable expo-
nents. Several illustrative examples, open problems and applications are exhibited, as well; Question
2.3, Question 2.9, Question 2.16, Question 2.17 and the following

Question 5.1. Let I = R and p ≥ 1. Does there exist a Weyl p-almost automorphic function of type 1

which is not Weyl p-almost automorphic?

Remain open after this study. The results of Section 3, which are formulated for the functions of the
form F : Rn ×X → Y, will be the basis of our further investigations of composition principles for Weyl
almost automorphic type functions and related abstract semilinear Cauchy problems.

Concerning the invariance of generalized almost periodicity and automorphy under the action of in-
finite convolution product (2.7), we would like to note that the notion of equi-Weyl-p-normality (see
Subsection 2.1) can be also modified following the approach obeyed in this paper; for example, in the
one-dimensional setting, we can analyze the following notion:

1. A p-locally integrable function f : R → X is said to be equi-Weyl-p-normal of type 1 if and only
if for any real sequence (sn) there exist a subsequence (snk

) of (sn) and a p-locally integrable function
f ∗ : R → X such that

lim
l→+∞

lim
k→+∞

sup
t∈R

1

2l

l∫
−l

∥∥f(t+ x+ snk

)− f ∗(t + x)
∥∥p dx = 0.
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2. A p-locally integrable function f : R → X is said to be jointly equi-Weyl-p-normal if and only
if for any real sequence (sn) there exist a subsequence (snk

) of (sn) and a p-locally integrable function
f ∗ : R → X such that

lim
(k,l)→+∞

sup
t∈R

1

2l

l∫
−l

∥∥f(t + x+ snk

)− f ∗(t+ x)
∥∥p dx = 0.

Then it is possible to state some results about the invariance of Weyl p-almost normality and jointly
Weyl p-almost normality under the actions of convolution products, like [27, Proposition 7]. It is also
worth noting that the characteristic function of any fixed compact subset of R is jointly equi-Weyl-p-
normal, with the limit function f ∗ ≡ 0.

The class of Besicovitch almost automorphic functions has been analyzed by F. Bedouhene, N. Challali,
O. Mellah, P. Raynaud de Fitte and M. Smaali in [5]. This class, which extends the class of Weyl p-
almost automorphic functions, is defined in the following way: Let p ≥ 1. Then we say that a function
f ∈ Lp

loc(R : X) is Besicovitch p-almost automorphic if and only if for every real sequence (sn), there
exist a subsequence (snk

) and a function f ∗ ∈ Lp
loc(R : X) such that

lim
k→∞

lim sup
l→+∞

1

2l

l∫
−l

∥∥∥f(t + snk
+ x
)− f ∗(t+ x)

∥∥∥p dx = 0

and

lim
k→∞

lim sup
l→+∞

1

2l

l∫
−l

∥∥∥f ∗(t− snk
+ x
)− f(t+ x)

∥∥∥p dx = 0

for each t ∈ R. Without going into any further details, we would like to note that the above notion can
be further extended by replacing the lim sup · in the above definition with lim inf · :
Definition 5.2. Let p ≥ 1. Then we say that a function f ∈ Lp

loc(R : X) is weakly Besicovitch p-almost
automorphic if and only if for every real sequence (sn), there exist a subsequence (snk

) and a function
f ∗ ∈ Lp

loc(R : X) such that

lim
k→∞

lim inf
l→+∞

1

2l

l∫
−l

∥∥∥f(t+ snk
+ x
)− f ∗(t + x)

∥∥∥p dx = 0

and

lim
k→∞

lim inf
l→+∞

1

2l

l∫
−l

∥∥∥f ∗(t− snk
+ x
)− f(t+ x)

∥∥∥p dx = 0

for each t ∈ R.

The interested reader may try to illustrate the hierarchy of the functions introduced by means of a
diagram or a figure, allowing to specify the link between the functions introduced and those existing
in the literature, and by exploiting the examples of this article. Multi-dimensional analogues of (weak)
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Besicovitch almost automorphic type functions can be also introduced and analyzed but it will be done
somewhere else. For more details about multi-dimensional almost automorphic functions, Stepanov
multi-dimensional almost automorphic functions and their applications, we refer the reader to the forth-
coming research monograph [25].
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