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RÉSUMÉ. L’objectif de ce travail est l’étude d’une méthode de résolution numérique par éléments finis semi-
lagrangiennes afin de résoudre les problémes évolutifs de convection-diffusion issus des milieux poreux. La méthode
proposée permet d’utiliser une approximation par éléments finis d’ordre égal pour toutes les solutions du probléme. En
outre, la condition standard de Courant-Friedrichs-Lewy est assouplie avec le traitement lagrangien des termes de convec-
tion, et les erreurs de troncature sont réduites dans la partie diffusion-réaction du probléme. Dans cette étude, une analyse
de la convergence et de la stabilité de la méthode proposée est aussi présentée, ainsi que les estimations des erreurs dans
la norme L2 dérivées pour toutes les solutions numériques. Les tests numériques sont illustrées par quelques exemples
afin de vérifier les estimations théoriques et de démontrer la grande précision et l’efficacité de la méthode proposée.
ABSTRACT. We present a Galerkin-characteristic finite element method for the numerical solution of time-dependent
convection-diffusion problems in porous media. The proposed method allows the use of equal-order finite element approx-
imations for all solutions in the problem. In addition, the standard Courant-Friedrichs-Lewy condition is relaxed with the
Lagrangian treatment of convection terms, and the time truncation errors are reduced in the diffusion-reaction part. Analy-
sis of convergence and stability of the proposed method is also investigated in this study and error estimates in the L2-norm
are established for the numerical solutions. Numerical performance of the method is examined using two examples to ver-
ify the theoretical estimates and to demonstrate the high accuracy and efficiency of the proposed Galerkin-characteristic
finite element method.
MOTS-CLÉS. Problémes de convection-diffusion, Équation de Darcy, Milieux poreux, Méthode semi-lagrangienne, Élé-
ments finis, Estimation des erreurs a priori.
KEYWORDS. Convection-diffusion problems, Darcy equation, Porous media, Galerkin-characteristic method, Finite ele-
ments, A priori error estimates.

1. Introduction

Convection-diffusion problems in porous media occur in several physical applications in fluid me-
chanics such as, petroleum reservoir engineering, geological sequestration of carbon dioxide, transport
of water and contaminants in saturated zones and aquifers, heat explosion problems in the chemical
industry, see [3, 16, 17, 29, 49, 31] among others. These problems involve many complex physical,
chemical and fluid flow processes which are typically described in mathematical terms by coupling the
mass conservation principle with the phenomenological Darcy’s law, see for instance [4, 5]. Let Ω ⊂ R

d

(d = 2, 3) be a bounded domain with Lipschitz continuous boundary Γ and [0, T ] a given time interval.
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In the present work, we focus on a time-dependent convection-diffusion problem coupled with the Darcy
equation. For all (x, t) in the domain Ω× [0, T ], the system of dimensionless equations reads

ν(Θ)u+∇p = f(Θ), in Ω× [0, T ],
(1a)

∇ · u = 0, in Ω× [0, T ],

DΘ

Dt
− κ∇2Θ = g(x, t), in Ω× [0, T ], (1b)

In the Darcy equations (1a), u is the velocity field, p the pressure, ν and f are the viscosity and the force
density respectively which both depend on the fluid temperature Θ. In the convection-diffusion equation
(1b), κ is the thermal diffusivity coefficient supposed to be a positive constant and g an external source
term, and

DΘ

Dt
=
∂Θ

∂t
+ u · ∇Θ, (1c)

is the material derivative which measures the rate of variation in the temperature Θ along the trajectories
of the flow particles known by characteristic curves. In order for the mathematical problem to be well
posed, the system (1a)-(1b) needs to be equipped with an initial condition

Θ(x, 0) = Θ0(x), in Ω, (1d)

as well as given boundary conditions. Note that different types of boundary conditions may be adopted
for equations (1a)-(1b) without major conceptual changes in the formulation. For simplicity in the pre-
sentation, homogeneous Dirichlet boundary conditions are considered for the pressure and temperature,
while no-slip boundary conditions are applied for the velocity. Thus, the associated boundary conditions
are given by

u · n = 0, on Γ, (1e)

Θ = 0, on Γ, (1f)

where n is the unit outward normal vector on the boundary Γ. Note that other boundary conditions
in (1e)-(1f) can also be used in this study without major conceptual modifications. The mathematical
theory and existence of a weak solution for the problem (1) is presented in [15, 27] among others. The
numerical resolution of this type of problems is still a challenging issue. Indeed, in the case of dominated
convection, especially when the diffusion coefficient κ reaches very low values, the convective term in
(1b) could be a source of severe computational difficulties and nonphysical oscillations. Moreover, nu-
merical solutions need an accurate approximation in order to resolve possible steep fronts and shocks, see
for instance [19, 21, 38, 44]. To deal with the difficulties generated by the presence of convective terms
in the governing equations, it is possible to opt for numerical techniques based on Lagrangian meth-
ods, see for example [13, 26]. However, the main disadvantage of these methods is the grid distortion
drawback specially when characteristic curves are required to be computed for time-dependent velocity
fields. Furthermore, the Eulerian finite element methods employ fixed grids and incorporate some up-
stream weighting in their formulations to stabilize the spatial discretization. These methods are easy to
formulate and to implement. However, time truncation errors dominate their solutions and are subject to
the Courant-Friedrichs-Lewy (CFL) stability conditions, which impose a sever restriction on the size of
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the time steps taken in the numerical simulations. Among the Eulerian methods we mention the stream-
line diffusion methods, the Petrov-Galerkin methods in addition to the the high resolution methods from
computational fluid dynamics, in particular, the Godunov methods and the essentially non-oscillatory
methods, see for example [32, 34, 47].

Modified method of characteristics also known in the meteorological community by semi-Lagrangian
methods, are a particularly wise choice for the solution of many time-dependent convection-dominated
equations. These Galerkin-characteristic methods have been successfully used in many fields such as
oceanography, geoscience, meteorology for weather forecasting, and more general problems in fluid
dynamics, see for instance [1, 39, 40, 45]. The basic idea behind these methods is to convert the gov-
erning equations from an Eulerian formulation to a Galerkin-characteristic one in terms of the particle
trajectories (or characteristic curves) associated with the total derivative (1c). The time derivative and
the convection terms are combined as a directional derivative along the particles trajectories, leading
to a characteristic time-stepping procedure. This procedure results in a substantial reduction in the
computational cost and in the time truncation errors. Moreover, it offers the possibility of using time
steps that exceed those allowed by the stability CFL condition for the conventional Eulerian methods.
The Galerkin-characteristic methods have been subject of investigations in many references including
[6, 19, 20, 21, 36, 37, 38, 42, 43, 44, 46]. In [19], the semi-Lagrangian method combined with a fi-
nite difference discretization has been studied and applied to convection-diffusion problems. In [20],
the method has been used with a Galerkin finite element discretization. In addition, an L2 interpolation
procedure has also been developed by tracking the feet of the characteristic curves from the integration
nodes. In [23, 25], the method has proved to be stable and accurate when used to study the thermal
incompressible Navier-Stokes equations. Semi-Lagrangian methods have also been investigated for the
simulation of natural and mixed convection flows in [21, 43], for tidal flows in [24], and for moving
thermal fronts in porous media in [42]. A first-order Galerkin-characteristic method combined with the
finite element discretization has been analyzed for the Navier-Stokes equations in [38]. It has been shown
that the method is unconditionally stable provided the characteristics are transported by divergence-free
velocity field. The case where the characteristics are transported by a discrete velocity field which is not
divergence-free has also been studied in [46].

In this paper, we propose a Galerkin-characteristic finite element method for the numerical solution of
the coupled convection-diffusion-Darcy equations (1). The main advantage of the proposed method lies
in the use of unified finite element approximations for the spatial discretization of the Darcy problem.
This class of finite elements has been well developed and analyzed in [9, 10, 18], and has been shown
to improve the accuracy for the solution of Darcy and Stokes problems. Indeed, unlike mixed finite
elements for which approximation spaces with different orders are used for the spatial discretization,
the unified finite element methods allow the same approximation spaces to be used for the pressure and
velocity solutions. It has also been shown in [9, 10, 18] that, when using an equal order interpolation,
the method offers simple and uniform data structures and a reasonable accuracy. To the best of our
knowledge, Galerkin-characteristic methods developed so far for flow and transport problems employ
mixed finite element formulations. To this end, our objective is to investigate the unified finite element
approach in the framework of Galerkin-characteristic solution of coupled convection-diffusion-Darcy
problems. Another advantage of combining unified finite element discretizations with the Galerkin-
characteristic is that the interpolation procedure at the characteristic feet can be performed using the
same basis functions. Consequently, this reduces the computational cost related to the mesh generation
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and requires less implementation work than using the mixed finite element discretizations. Moreover,
the proposed method is suitable for complex geometries, independent of the size and arrangement of the
mesh elements, and can easily combine different polynomial orders of elements. These properties are
very useful when coupling the Darcy flows to complex components to simulate problems, for example, in
transport in porous media and multiphase flows. In the present work, a second-order accuracy is achieved
for all solutions in the problem (1). In terms of analysis, we demonstrate the existence and uniqueness of
solutions for the problem (1), present analysis of convergence and stability for the proposed method and
thus, derive optimal a priori error estimates for the numerical solutions in the framework of L2-theory. To
validate the theoretical results and examine the performance of the Galerkin-characteristic finite element
method, we perform several numerical tests. We consider a time-dependent coupled convection-diffusion
Darcy problem with known analytical solution. The obtained results demonstrate good resolution with
high accuracy and stability behaviors.

The paper is organized as follows. Notations, functional spaces and assumptions used for the analysis
of stability and convergence are introduced in Section 2. Formulation of the Galerkin-characteristic
unified finite element method used for solving the coupled Darcy-convection-diffusion equations (1) is
presented in section 3. Analysis of stability and convergence along with a priori error estimates in the L2-
norm are established in Section 4. Some numerical experiments are presented in section 5. Concluding
remarks are given Section 6.

2. Preliminaries and assumptions

In this section, we introduce the main notations and some approximation results that will be used
throughout this paper. In what follows, we use the notation w to denote the value of a generic scalar
function, the boldface notation w to denote a vector valued function, and K, K ′, K ′′, K1, . . . to denote
generic positive constants whose values may change from one place to another but that remain indepen-
dent of the mesh parameters. Spaces consisting of vector valued functions will be denoted in boldface.
Let the notation | · | be the standard Euclidean norm in R

d (d = 2, 3). We denote by Ck(Ω), k ≥ 1 the
class of functions whose partial derivatives of order at least k are bounded and uniformly continuous in
Ω, whereas Ck

0 (Ω) denotes the set of compactly supported functions contained in Ck(Ω). We introduce
the Sobolev spaces Wm,p(Ω) for any integers (m, p), m ≥ 1 and 1 ≤ p ≤ ∞ as

Wm,p(Ω) =

{
w ∈ Lp(Ω)d : Dkw ∈ Lp(Ω)d, ∀ |k| ≤ m

}
,

where k = (k1, . . . , kd) ∈ N
d is a multi-index of order |k| = k1 + · · · + kd, and the derivative operator

Dk is given by

Dk =
∂|k|

∂xk11 · · · ∂xkdd
.

These spaces are equipped with the following norms

‖w‖m,p =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝ ∑
0≤|k|≤m

∥∥Dkw
∥∥p
Lp(Ω)

⎞⎠
1
p

, if 1 ≤ p <∞,

max
x∈Ω,0≤|k|≤m

∥∥Dkw
∥∥
L∞(Ω)

, if p = ∞,
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and the semi-norms

|w|m,p =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝∑
|k|=m

∥∥Dkw
∥∥p
Lp(Ω)

⎞⎠
1
p

, if 1 ≤ p <∞,

max
x∈Ω,|k|=m

∥∥Dkw
∥∥
L∞(Ω)

, if p = ∞.

In the special case p = 2, the space Wm,2(Ω) (m ≥ 1) forms the Hilbert space Hm(Ω) which is the
closure of C∞(Ω), while Hm

0 (Ω) is the closure of C∞
0 (Ω) with respect to the same norm. In particular,

for m = 1 we introduce the following spaces

H1(Ω) =

{
w ∈ L2(Ω) : ∂kw ∈ L2(Ω), ∀ |k| ≤ 1

}
, H1

0(Ω) =

{
w ∈ H1(Ω) : w|Γ = 0

}
.

We define the space

L2(Ω) =

{
w : Ω −→ R :

∫
Ω

w2dΩ <∞
}
,

whose inner product and norm are denoted by

(w, v) =

∫
Ω

wv dΩ and ‖w‖L2(Ω) = (w,w)
1
2 , ∀ w, v ∈ L2(Ω),

respectively. We also define the space L2
0(Ω) of all square integrable functions with vanishing mean as

L2
0(Ω) =

{
w : Ω −→ R :

∫
Ω

wdΩ = 0

}
.

We recall the standard spaces H (div,Ω) and H0 (div,Ω)

H (div,Ω) =

{
w ∈ (L2(Ω))d : div (w) ∈ L2(Ω)

}
,

H0 (div,Ω) =

{
w ∈ H(div,Ω) : (w · n)

∣∣∣
Γ
= 0

}
.

For any 1 ≤ p ≤ ∞ and a Banach space X , we introduce the standard Bochner space Lp(0, T ;X)

consisting of all measurable functions w(t,x) defined in [0, T ]× Ω for which

T∫
0

‖w‖pXdt < ∞, if 1 ≤ p <∞,

ess sup
t∈[0,T ]

‖w(·, t)‖X < ∞, if p = ∞.

The space Lp(0, T ;X) is equipped with the norm

‖w‖Lp(0,T ;X) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝ T∫
0

‖w‖pXdt

⎞⎠1/p

, if 1 ≤ p <∞,

ess sup
t∈[0,T ]

‖w(·, t)‖, if p = ∞.
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Then, for the time discretization we divide the time interval [0, T ] into NT subintervals [tn, tn+1] with
length Δt = tn+1 − tn for n = 0, 1, . . . , NT . For the space discretization, let Ωh ⊂ Ω̄ = Ω∪ Γ denotes a
quasi-uniform partition of Ω into triangular finite elements Tj with the partition step h. The triangles Tj
satisfy the following conditions:

(i) Ω =
Ne⋃
j=1

Tj , where Ne is the number of elements of the partition Ωh.

(ii) If Ti and Tj are two different elements of the partition Ωh, then

Ti ∩ Tj =

⎧⎪⎪⎨⎪⎪⎩
Pij, a mesh point, or

Γij, a common side, or

∅, empty set.

(iii) There exists a positive constant κ such that for all j ∈ {1, · · · , Ne},
dj
hj

> κ (hj ≤ h), where dj is

the diameter of the circle inscribed in Tj and hj is the largest side of Tj .

The conforming finite element space for the temperature and pressure is defined as

Vh =
{
vh ∈ C0(Ω) : vh

∣∣
Tj ∈ Pk(Tj), ∀ Tj ∈ Ωh

}
,

where Pk(Tj) is the space of complete polynomials of degree k, k ≥ 2, on each element Tj . We also
define the conforming finite element space Vh = (Vh)

d for the velocity field. Hence, we formulate the
finite element solutions to un(x), pn(x) and Θn(x) as

un
h(x) =

M∑
j=1

Un
j · ϕj(x), pnh(x) =

M∑
j=1

P n
j φj(x), Θn

h(x) =
M∑
j=1

Cn
j φj(x), (2)

with Un
j , P n

j and Cn
j are the corresponding nodal values of un

h(x), p
n
h(x) and Θn

h(x) respectively defined
by Un

j = un
h(xj), P n

j = pnh(xj) and Cn
j = Θn

h(xj), with {xj}Mj=1 being the set of mesh points in the
partition Ωh, and {ϕj}Mj=1 = {(φj, φj)}Mj=1 and {φj}Mj=1 are the basis vectors and functions of Vh and Vh
respectively given by the Kronecker delta symbol.

For the variational formulation, we shall need the equal-order finite element pair (Sh, Qh) to approxi-
mate the velocity and pressure solutions of the Darcy equations (1a), defined as

Sh = Vh ∩H0 (div,Ω) and Qh = Vh ∩ L2
0(Ω). (3)

We also define the necessary finite element space Rh to approximate the temperature solution of the
convection-diffusion equation (1b) as

Rh = Vh ∩H1
0 (Ω) . (4)

Next, we announce the following assumptions:

ASSUMPTION 1. The velocity field u is assumed to satisfy

1. u(x, t) ∈ C0
(
0, T ;W 1,∞(Ω)

)
,
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2. ∇ · u(x, t) = 0 in Ω,

3. u(x, t) · n = 0 on Γ.

ASSUMPTION 2. The temperature Θ satisfies

1. Θ ∈ L∞(0, T ;Hm+1 ∩Wm+1,∞(Ω)),

2.
D2Θ

Dt2
∈ L2(0, T ;L2(Ω)),

3.
D3Θ

Dt3
∈ L2(0, T ;L2(Ω)).

ASSUMPTION 3. The functions ν, f and g are assumed to verify:

1. ν is Lipschitz continuous and there exist two strictly positive constants ν1 and ν2 such that

ν1 ≤ ν(ξ) ≤ ν2, ∀ ξ ∈ R.

2. f is Lipschitz with respect to its variable Θ, i.e.,

‖f(Θ)‖L∞(0,T ;L2(Ω)d) ≤ Kf ‖Θ‖L∞(0,T ;L2(Ω)d) ,

where Kf is a positive constant.

3. g ∈ L2
(
0, T ;L2(Ω)

)
.

Following [10, 18], we consider the following necessary hypotheses on the velocity u and pressure p:

ASSUMPTION 4. The spaces Sh have the following approximation property: given a function u ∈
Hk+1(Ω)d, k = 1, 2, there exists uh ∈ Sh such that

‖u− uh‖L2(Ω)d + h |u− uh|H1(Ω)d ≤ Khk+1 |u|Hk+1(Ω)d , (5)

where K is a positive constant independent of h.

ASSUMPTION 5. We assume that for all p ∈ H1(Ω), there exists a function ph ∈ Qh such that

‖p− ph‖L2(Ω) ≤ Kh |p|H1(Ω) , (6)

where K is a positive constant independent of h.

We introduce the projection operator Πk−1 : L
2(Ω) −→ [P ]k−1 as defined in [10]:

Πk−1(p) = argmin
1

2

∫
Ω

(Πk−1q − p)2 dΩ, ∀q ∈ [P ]k−1 , (7)

where [P ]k−1 is the discontinuous polynomial space defined as

[P ]k−1 =

{
q ∈ L2(Ω) : q

∣∣∣∣
Tj

∈ Pk−1(Tj), ∀ Tj ∈ Ωh

}
.

Then, we have the following assumption on the projection operator defined in (7):
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ASSUMPTION 6. For all p ∈ L2(Ω), the operator Πk−1 defined in (7) is assumed to satisfy:

1. Πk−1: L2(Ω) −→ L2(Ω) is continuous and

‖Πk−1p‖L2(Ω) ≤ K ‖p‖L2(Ω) , (8)

where K is a positive constant independent of h.

2. The properties of Πk−1 must be augmented by the approximation

‖p− Πk−1p‖L2(Ω) ≤ K ′h |p|H1(Ω) , (9)

where K ′ is a positive constant independent of h.

Finally, we introduce the operators required for the error analysis of the temperature solution. Hence,
assuming that the subset Vh is composed of polynomials of degree k ≥ 2 on each element Tj , j =

1, . . . , Ne of the partition Ωh. We define the following operators:

• The orthogonal projection operator P0 : H
−1(Ω) −→ Vh

(P0Θ, φ) = (Θ, φ) , ∀ φ ∈ Vh. (10)

• The polynomial interpolant of degree m for continuous functions Θ ∈ Vh, Im : C0(Ω) −→ Vh

ImΘ(x) =
M∑
j=1

Θ(xj)φj(x), ∀ x ∈ Ω, (11)

where xj (1 ≤ j ≤M ) are mesh points in the partition Ωh. Then, by the approximation theory, we
have

‖Θ− ImΘ‖L2(Ω) ≤ Khm+1|w|m+1. (12)

• The linear continuous operator O : H1
0(Ω) −→ H−1(Ω)

〈OΘ, r〉 = (∇Θ,∇r) , ∀ r ∈ H1
0(Ω), (13)

where 〈·, ·〉 denotes the duality pairing. It is evident that A is a symmetric positive definite operator
on H1

0(Ω).

• The discrete operator Oh : Vh −→ Vh,

(OhΘh, φ) = 〈AΘh, φ〉 , ∀ φ ∈ Vh. (14)

Oh is also a symmetric positive definite operator on Vh.

• The Ritz projection operator R : Vh −→ Vh,

(∇Θ,∇r) = 〈AΘh, φ〉 , ∀ φ ∈ Vh. (15)

• The discrete operator Gh : Vh −→ Vh,

(gh, φ) = (g, φ), ∀ φ ∈ Vh. (16)

Note that it is easy to verify that

OhR = P0A and Gh = P0g.

Note that the assumptions introduced above are necessary for the existence and uniqueness of the solution
of problem (1), and also for the a priori error analysis.

© 2021 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 103



3. Solution of the convection-diffusion-Darcy problem

In this section, we formulate the unified Galerkin-characteristic finite element approximation used for
solving the coupled convection-diffusion-Darcy problem (1). Next, we derive the second-order Crank-
Nicolson scheme applied for the time integration and prove the existence and the uniqueness of the
solution.

3.1. Unified Galerkin-characteristic finite element approximation

As in most finite element methods, we begin with the variational formulation that reads as: Find
(u, p,Θ) in H0 (div,Ω)× L2

0(Ω)×H1
0(Ω) such that∫

Ω

ν(Θ)u · s dΩ−
∫
Ω

p∇ · s dΩ =

∫
Ω

f (Θ) · s dΩ, ∀ s ∈ H0(div,Ω),

(17a)∫
Ω

q ∇ · u dΩ = 0, ∀ q ∈ L2
0(Ω),∫

Ω

DΘ

Dt
r dΩ + κ

∫
Ω

∇Θ · ∇r dΩ =

∫
Ω

gr dΩ, ∀ r ∈ H1
0(Ω). (17b)

Notice that it is evident to prove that any triplet (u, p,Θ) in H0(div,Ω) × L2
0(Ω) × H1

0(Ω) solving the
problem (1) in the sense of distributions in Ω is a solution of the variational problem (17), see [14, 42] for
more details. It is also worth noting that the main advantage of the proposed method is that it does not
require the use of mixed formulations such as those widely employed in the literature, see for instance
[2, 41]. Thus, the conforming finite element spaces that we use are polynomials Pk of the same degree
k, k ≤ 2, for all the solutions defined on the element Tj in Ωh. To approximate the velocity and pressure
solutions of the Darcy equations (17a), we use the equal-order finite element pair (Sh, Qh) defined in
(3). Next, to approximate the temperature solution of the convection-diffusion equation (17b) we use the
finite element space Rh defined in (4).

Note that we can rewrite equations (17a) as

A (uh, sh)− B (ph, sh) = Lf (sh) , ∀ sh ∈ Sh,
(18)

B (qh,uh) = 0, ∀ qh ∈ Qh,

where A, B are the bilinear forms and Lf is the linear form defined as

A(uh, sh) =

∫
Ω

ν(Θ)uh · sh dΩ, B(ph, sh) =
∫
Ω

ph∇ · sh dΩ, Lf (sh) =

∫
Ω

f(Θh) · sh dΩ.

Note that stable and accurate solutions of the discrete problem (18) are obtained for discrete spaces Sh

and Qh satisfying the discrete inf-sup condition [12]:

sup
sh∈Sh
sh �=0

B (ph, sh)

‖sh‖H1(Ω)d
≥ K ‖ph‖L2(Ω) , ∀ ph ∈ Qh, (19)
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with K > 0 being a constant independent of h. It is well known however that the pair (Sh, Qh) does
not verify the inf-sup condition associated with the mixed form (18), see [10, 11, 30] for further details.
Then, the discrete weak problem is not stable and a stabilization techniques is required. To stabilize
(18) we use the polynomial pressure-projection stabilization method introduced in [9, 10], and thus the
velocity-pressure space (Sh, Qh) verifies a stabilized form of the inf-sup condition (19). We recall the
following result whose proof can be found in [10].

Lemma 1. Let Sh and Qh be the spaces defined in (3). Then, there exist positive constants K1 and K2

whose values are independent of h such that

sup
sh∈Sh
sh �=0

B (ph, sh)

‖sh‖H1(Ω)d
≥ K1 ‖ph‖L2(Ω) −K2 ‖ph − Πk−1ph‖L2(Ω) , ∀ ph ∈ Qh, (20)

where Πk−1 is the projection operator defined in (7). �

Thereafter, the stabilized weak form of equations (17a) reads as: Find (uh, ph) ∈ Sh ×Qh such that

A (uh, sh)− B (ph, sh) = Lf (sh) , ∀ sh ∈ Sh,
(21)

B (qh,uh) = D (ph, qh) , ∀ qh ∈ Qh,

where D is the bilinear form defined as

D (ph, qh) =

∫
Ω

(ph − Πk−1ph) (qh − Πk−1qh) dΩ.

Note that, in contrast to other stabilization techniques, the unified finite element method offers attractive
computational properties as, it does not require calculation of higher order derivatives and always leads
to symmetric linear systems. The stabilized unified finite element method has been investigated and
analyzed for Stokes and Darcy problems in [9, 10, 18]. The obtained results have shown that the method
is unconditionally stable and it allows to achieve optimal accuracy with respect to solution regularity.

Next, to solve the convection-diffusion equation (17b), we use the modified method of characteristics
for the transport term. This class of methods has been used for solving many convection-dominated
flow problems, see for example [6, 22, 19, 38, 36, 37, 42]. The main idea is to treat the transport part
DΘ

Dt
of equation (17b) separately in the finite element discretization. Then, new temperature solution

is approximated at each time subinterval [tn, tn+1] using the characteristic curves associated with the
material derivative (1c). We denote by X(x, tn+1; t) the characteristic curves associated with the material
derivative (1c). These are the solutions of the ordinary differential equations

dX(x, tn+1; t)

dt
= u (X(x, tn+1; t), t) , ∀ (t,x) ∈ [tn, tn+1]× Ω̄,

(22)
X(x, tn+1; tn+1) = x.

Notice that we assume that the velocity field u satisfies Assumption 1 which guarantees the existence
and uniqueness of the solution of (22) for all times t, see for instance [28]. The solutions of equation
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(22) represent the departure points at time t of a particle passing through the point x at time t = tn+1.
Then, the unique solution of (22) can be written for all (t,x) in [tn, tn+1]× Ω̄ as

X(x, tn+1; tn) = x−
tn+1∫
tn

u (t,X(x, tn+1; t)) dt, (23)

To obtain the departure points {Xn
hj} for each mesh point xj , j = 1, . . . ,M , we use the algorithm

proposed in [48] which accurately solves (22) with a second-order accuracy. We write the solution of
(22) in the form of

Xn
hj = xj − dhj, j = 1, . . . ,M, (24)

where the displacement dhj is calculated by the iterative procedure

d
(0)
hj =

Δt

2

(
3un

h (xj)− un−1
h (xj)

)
,

(25)

d
(k+1)
hj =

Δt

2

(
3un

h

(
xj −

1

2
d
(k)
hj

)
− un−1

h

(
xj −

1

2
d
(k)
hj

))
, k = 0, 1, . . . .

To evaluate values of the approximate velocities un
h

(
xj −

1

2
d
(k)
hj

)
and un−1

h

(
xj −

1

2
d
(k)
hj

)
in (25), we

first identify the mesh element T̂j where xj −
1

2
d
(k)
hj resides. Then, a finite element interpolation on T̂j is

performed according to (2). In the numerical simulations obtained, the iterations in (25) were continued
until the trajectory changed by less than 10−7. However, in practice it is not recommended to repeat the
iteration process more than a few times due to efficiency considerations.

Now, we assume that the pairs (Xn
hj, T̂j) along with the mesh point values

{
Cn
j

}
are known for all

j = 1, . . . ,M , we can compute the values
{
Ĉn
j

}
as

Ĉn
j := Θn

h(X
n
hj) =

M∑
k=1

Ckφ(Xn
hj). (26)

Then, the solution
{
Θ̂n

h

}
of the convection-diffusion equation (1b) is obtained by

Θ̂n
h(x) =

M∑
j=1

Ĉn
j φj(x). (27)

Note that (26) and (27) are respectively, the local and global approximations of the solution cnh at the
departure points Xn

hj .

3.2. Time integration procedure

To solve the reaction-diffusion terms in (1b) we use the Crank-Nicolson scheme for the time integration
as

Θn+1
h − Θ̂n

h

Δt
− κ

2
∇2Θn+1

h = gnh +
κ

2
∇2Θ̂n

h (28)
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Then, we obtain the discretization of the convection diffusion problem (17) as:

Find
(
un+1
h , pn+1

h ,Θn+1
h

)
in Sh ×Qh × Rh such that∫

Ω

ν(Θ̂n
h)u

n+1
h · sh dΩ−

∫
Ω

pn+1
h ∇ · sh dΩ =

∫
Ω

f(Θ̂n
h) · sh dΩ, ∀ sh ∈ Sh,

(29a)∫
Ω

qh ∇ · un+1
h dΩ =

∫
Ω

(
pn+1
h − Πk−1p

n+1
h

)
(qh − Πk−1qh) dΩ, ∀ qh ∈ Qh,

∫
Ω

Θn+1
h − Θ̂n

h

Δt
rh dΩ+

κ

2

∫
Ω

∇Θn+1
h · ∇rh dΩ =

∫
Ω

gnhrh dΩ+

κ

2

∫
Ω

∇Θ̂n
h · ∇rh dΩ, ∀ r ∈ Rh, (29b)

where Θ̂n
h are the characteristics curves obtained by (27) and gnh the function given by

gnh =
1

Δt

tn+1∫
tn

gh(s) ds.

It is worth mentioning that by using the proposed Galerkin-characteristic approach, the time derivative
and the convection terms are combined as a directional derivative along the particles trajectories, leading
to a characteristic time-stepping procedure. This results in a substantial reduction in both the compu-
tational cost and the time truncation errors in the diffusion-reaction part of the problem under study.
Needless to mention that most of conventional Eulerian-based Galerkin finite element methods are sub-
ject to stability conditions which impose strict limitations on the time steps considered in the numerical
simulations, see for instance [32, 34, 47]. For the existence and uniqueness of the solution of (29), we
have the following Theorem:

THEOREM 1. At each time step tn and for given Θ̂n
h ∈ Rh, problem (29) has a unique solution

(un+1
h , pn+1

h ,Θn+1
h ) in Sh ×Qh × Rh that verifies the following bounds:

∥∥un+1
h

∥∥2
L2(Ω)d

≤
(
Kf

ν1

)2 ∥∥∥Θ̂n
h

∥∥∥2
L2(Ω)d

+Kh2
∣∣pn+1

h

∣∣2
H1(Ω)

, (30)

∥∥Θn+1
h

∥∥
L2(Ω)

−
∥∥∥Θ̂n

h

∥∥∥
L2(Ω)

≤ Δt ‖gnh‖L2(Ω) , (31)

where K is a positive constant independent of h. �

PROOF. It is clear that the Darcy equations (21) have a unique solution since they satisfy the inf-sup
condition (20). Let a and b be two real numbers. For any positive real number ε, we have the well-known
Young’s inequality

ab ≤ 1

2ε
a2 +

1

2
εb2. (32)
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By testing equations (29a) with sh = uh and qh = ph and using the Cauchy-Schwarz inequality and (32)

with ε =
ν1
Kf

, along with Assumptions 3 and 6, we immediately derive (30).

Next, knowing un
h ∈ Sh and thus Θ̂n

h, the convection-diffusion equation (29b) admits also a unique
solution Θn+1

h ∈ Rh. Therefore, if we take rh = Θn+1
h + Θ̂n

h in (29b), we obtain and use the Cauchy-
Schwarz and triangle inequalities, we easily get the inequality (31).

4. A priori error analysis

In this section, we present the a priori error estimates in the L2-norm corresponding to the velocity,
pressure temperature solutions.

4.1. Error estimates for velocity and pressure

Let (u, p) and (un
h, p

n
h) be the solutions of the Darcy problems (17a) and (21), respectively. Equations

(17a) can be written in compact form as

S (un, pn; s, q) = Lf (s) , ∀ (s, q) ∈ H1
0(Ω)× L2

0(Ω), (33)

with S being the bilinear form given by

S (un, pn; s, q) = A (un, s)− B (pn, s) + B (q,un) .

Similarly, we can write (21) in the following form

S̃ (un
h, p

n
h; sh, qh) = Lf (sh) , ∀ (sh, qh) ∈ Sh ×Qh, (34)

where S̃ is the bilinear form given by

S̃ (un
h, p

n
h; sh, qh) = A (un

h, sh)− B (pnh, sh) + B (qh,u
n
h)−D (pnh, qh) .

The stability of the variational problem (21) is provided by the following Theorem associated to the weak
coercivity bound, the proof for which can be found in [10]:

THEOREM 2. Let (Sh, Qh) be the pair of spaces defined in (3). Then, there exists a positive constant K
whose value is independent of h such that

sup
(sh,qh)∈Sh×Qh

S̃ (un
h, p

n
h; sh, qh)

|sh|H1(Ω)d + ‖qh‖L2(Ω)

≥ K
(
|uh|H1(Ω)d + ‖ph‖L2(Ω)

)
, ∀ (uh, ph) ∈ Sh×Qh. �

(35)

Next, to establish a priori error estimates for the stabilized solutions of (34), we shall use the following
Theorem, , the proof for which can be found in [42]:

THEOREM 3. Let (Sh, Qh) be the pair of spaces defined in (3), let (u, p) ∈ H0 (div,Ω) × L2
0(Ω) be the

solution of the Darcy problem (17a) and let (uh, ph) ∈ Sh × Qh be the solution of the stabilized mixed
problem (21), where the operator Πk−1 defined in (7) satisfies (6). Then, there exists a positive constant
K whose value is independent of h such that

|un − un
h|H1(Ω)d + ‖pn − pnh‖L2(Ω) ≤ K

(
inf

wh∈Sh

|un −wn
h|H1(Ω)d + inf

lh∈Qh

‖pn − lnh‖L2(Ω) +
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‖pn − Πk−1p
n‖L2(Ω) +

∥∥∥Θ̂n−1
h −Θn−1

∥∥∥
L2(Ω)d

)
. � (36)

Notice that Theorem 3 shows that solutions of (34) converge optimally in regard to the solution regu-
larity. Thus, we deduce, from Theorem 3, the following result for the error estimates of the velocity and
pressure solutions:

Lemma 2. Let (u, p) be the solution of (17a) and (un
h, p

n
h) be the solution of (21) at each time step tn.

Under Assumptions 4, 5 and 6, there exists a positive constant K depending on u and p such that

|un−un
h|H1(Ω)d +‖pn − pnh‖L2(Ω) ≤ K

(
h|un|H2(Ω)d +h|pn|H1(Ω)d +‖Θ̂n−1

h −Θn−1‖L2(Ω)d

)
. � (37)

PROOF. Under Assumptions 4, 5 and 6, and by taking into account the inequality (36) of Theorem 3,
we immediately obtain (37).

4.2. Error estimates for the temperature

To establish error estimates for the temperature solution, we consider the one-step method for the
computation of the approximate solutions {Xn

h} of (22) which has the following form [6, 20, 42]:

Xn
h(x) = x−ΔtΦuh

(tn+1,x,Δt), ∀ x ∈ Ωh, (38)

with Φuh
(tn+1,x,Δt) being the incremental function. We also announce the following assumption that

provides the convergence of Xn
h(x) to Xh(x, tn+1; tn):

ASSUMPTION 7. We impose the following assumption:

1. There exists a real constant 0 < Δt0 < 1 such that:

Φuh
: [0, T ]× Ωh × (0,Δt0) −→ R

d,

is a continuous function that only depends on uh.

2. For any t ∈ [0, T ] and x ∈ Ωh, Φuh
(t,x,Δt) −→ uh(x, t) as Δt −→ 0.

3. For any t ∈ [0, T ], x,y ∈ Ωh and Δt ∈ (0,Δt0), there exists a positive constant K such that

|Φuh
(t,x,Δt)− Φuh

(t,y,Δt)| ≤ K|x− y|.

4. There exists Δt∗, with 0 < Δt∗ < Δt0, such that for Δt ∈ (0,Δt∗) and h ∈ (0, h0), the method is
absolutely stable.

5. The method is of order p, where p is an integer larger than 0. This means that, if

Xh(x, tn+1; tn) = x−
tn+1∫
tn

uh (t,Xh(x, tn+1; t)) dt,

is the exact solution of (22) for any x ∈ Ωh, and we assume that uh(x, t) is sufficiently smooth in
time, then for all Δt ∈ (0,Δt∗), h ∈ (0, h0) and tn ∈ (0, T ], we have

|Xh(x, tn+1; tn)−Xn
h(x)| = O(Δtp+1).
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We also recall the following result concerning convergence of the characteristics, the proof for which
can be found in [6, 20]:

Lemma 3. Assume that for each time subinterval [tn, tn+1], the points {Xn
h(x)} are calculated by the

one-step method (38) such that Assumption 7 holds. Then

‖X(x, tn+1; tn)−Xn
h(x)‖L∞(0,T ;L2(Ω)) ≤ KΔt ‖u− uh‖L∞(0,T ;L2(Ω)) +O(Δtp+1), (39)

where K is a positive constant defined by K = eΔt∗|∇u|L∞(0,T,Ω) . �

Notice that it is necessary to impose a condition on Δt to approximate the departure points {Xn
h(x)},

under which the functional iterative dhj defined in (24) converges.

Lemma 4. Suppose that Assumption 2 holds and that for all n

Δt‖∇Θn
h‖L∞(Ω) < 2. (40)

Then, (39) represents an estimate of the committed error to compute the departure points {Xn
h(x)}. �

As a consequence, we shall study stability and convergence for the temperature solution in the L2-
norm. To this end, we recall the following result of reference [6] (Lemma 6 in page 40) concerning the
stability of the Galerkin-characteristic step:

Lemma 5. Assume that Assumption 7 holds, then for any tn ∈ [0, T ], we have

‖Θ̂n
h‖L2(Ω) ≤ ‖Θn

h‖L2(Ω). � (41)

Next, to prove convergence of stabilized solutions of (29b), we shall use the following Theorem:

THEOREM 4. Assume that Assumption 7 holds, then for any tn ∈ [0, T ] we have

‖Θn+1
h ‖L2(Ω) − ‖Θn

h‖L2(Ω) ≤ Δt ‖gnh‖L2(Ω). � (42)

PROOF. If we take rh = Θn+1
h + Θ̂n

h in (29b), we obtain

‖Θn+1
h ‖2 − ‖Θ̂n

h‖2+ ≤
(
Δt gnh ,Θ

n+1
h + Θ̂n

h

)
Then, using Cauchy-Schwarz and triangle inequalities together with (41), we immediately obtain (42)
for each time step tn.

Next, referring to [33] and under an additional assumption that the approximate solutions uh are expo-
nentially stable, it follows that

‖u− uh‖ ≤ β(t)hm+1 ∀ t ∈ [0, T ], (43)

where the function β(t) is an error constant independent of h given by

β(t) = β0e
β0tτ

1−m
2 (t), (44)
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with τ(t) = min(t, 1) and β0 being a constant that depends on the solution u. If h is sufficiently small
then, the approximation (43) holds on any interval of time over which the Dirichlet norm of u is bounded
i.e., there exists a constant Kβ > 0 such that

sup
[0,T )

‖∇u‖ ≤ Kβ.

For the temperature solution, we consider the standard estimates of Θ − RΘ and Θ − P0Θ which are
presented in the following Lemma [7], where R and P0 are the Ritz and orthogonal projection operators
respectively defined in Section 3:

LEMMA 1. If Θ belongs to L∞(0, T ;Hr(Ω)). Then, for all t ∈ [0, T ], there exist positive constants K1

and K2 such that for 1 ≤ r ≤ m+ 1 the solution Θ of the transport-diffusion equation (1b) satisfies∥∥Θ− RΘ
∥∥
L∞(0,T ;L2(Ω))

+ h
∥∥Θ− RΘ

∥∥
L∞(0,T ;H1(Ω))

≤ K1h
r
∥∥Θ∥∥

L∞(0,T ;Hr(Ω))
, (45)

and ∥∥Θ− P0Θ
∥∥
L∞(0,T ;L2(Ω))

+ h
∥∥Θ− P0Θ

∥∥
L∞(0,T ;H1(Ω))

≤ K2h
r
∥∥Θ∥∥

L∞(0,T ;Hr(Ω))
. � (46)

We also recall the following auxiliary results concerning properties of the mapping x −→ X(x, s, t)

and x −→ Xh(x, s, t) whose proofs can be found in [46].

LEMMA 2. Suppose that Assumption 7 holds, then the mapping x −→ Xh(x, s; t) is a quasi-isometric
homeomorphism of Ω into itself with an a.e zero Jacobian determinant. �

Another interesting result related with the homeomorphisms of the previous Lemma is presented in the
following Lemma [35]:

LEMMA 3. Let X(x, s; t) be the unique solution of (22) and assume that a quasi-isometric homeomor-
phism x −→ X(x, s; t) is of class Θr−1,1(Ω̄), r ≥ 1. Let f ∈ W r,p(Ω̄) and h = f(X(x, s; t)), then
h ∈ Wr,p(Ω̄) and there exist positive constants K1 and K2 such that

K1‖f‖r,p ≤ ‖h‖r,p ≤ K2‖f‖r,p. �

Thus, since x −→ X(x, s; t) defines a quasi-isometric homeomorphism of Ω onto itself, at each time
δ ∈ [tn, tn+1] we can introduce the ephemeral Ritz projection and L2-projection operators RΘ̂ and P0Θ̂

respectively, as follows:

RΘ̂(x, δ) = z(x, δ) =
M∑
j=1

zj(δ)φj(x),

(47)

P0Θ̂(x, δ) =
M∑
j=1

P0Θ̂j(δ)φj(x),

such that ∀ φh ∈ Vh

(K ∇z(x, δ),∇φh) =
(
K ∇Θ̂(x, δ),∇φh

)
= P0

(
g(Xδ, δ)− DΘ(Xδ, δ)

Dδ

)
,

(48)(
P0Θ̂(x, δ), φh

)
=
(
Θ̂(x, δ), φh

)
,
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where Θ̂(x, δ) = Θ(Xδ, δ) with Xδ = X(x, tn+1; δ). Note that according to the definitions of Oh, P0

and equation (48) it follows that

Oh z = P0

(
g(Xδ, δ)− DΘ(Xδ, δ)

Dδ

)
. (49)

Consequently, for t = tn+1, zn+1 = RΘn+1 and Θn+1 = P0Θ
n+1 for all n, and by virtue of Lemma 1

and Lemma 3, we have the following result [6]:

LEMMA 4. Assume that Θ ∈ L∞(0, T ;Hm+1). Then, for all δ ∈ [tn, tn+1] there exist positive constants
K1 and K2 such that

‖Θ̂− z‖L2(Ω) + h‖Θ̂− z‖H1(Ω) ≤ K1h
m+1‖Θ‖Hm+1(Ω),

and

‖Θ̂− P0Θ̂‖ ≤ K2h
m+1‖Θ‖Hm+1(Ω). �

Next, by combining (1b) and (49), we obtain

∂z

∂δ
+Ohz = P0

(
g(Xδ, δ) +

∂z

∂δ
− DΘ(Xδ, δ)

Dδ

)
. (50)

Note that each term of (50) is an element of Vh. Now, we discretize (50) by Crank-Nicolson scheme as
follows

zn+1 = Ehz
n +

Δt

2
Sh

(
P0g

n+1 + P0ĝ
n
)
+ ShP0

(
zn+1 − zn

)
−ΔtShP0

(
DΘ(Xδ′, δ′)

Dδ

)
,

≡
4∑

i=1

Ei, (51)

where δ′ = tn +
Δt

2
and the operators Eh : Vh −→ Vh and Sh : Vh −→ Vh are given by

Ehvh =

(
Ih − Δt

2 Oh

Ih +
Δt
2
Oh

)
vh, Shvh =

(
Ih

Ih +
Δt
2
Oh

)
vh,

where Ih : Vh −→ Vh is the identity operator and Eh and Sh verify ‖|Eh‖| < 1 and ‖|Sh‖| < 1, with
‖| · ‖| being the operator norm. Hence, we have the following result for the error estimate in the L2-norm
corresponding to the temperature solution:

THEOREM 5. Assume that the following hypotheses hold

1. h = O(Δt),

2. Assumption 2,

3. Assumption 7,

4. The time step Δt satisfies the condition (40).
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Then, there exists a positive constant K such that

max
0≤tn≤T

∥∥Θ(tn)−Θn
h

∥∥ ≤ Khm+1‖Θ‖L∞(0,T ;Hm+1(Ω)) +K

(
hm+1

Δt
+ max

t∈(0,T )
β(t)hm+1+

O(Δtp)

)
‖Θ‖L∞(0,T ;Wm+1,∞(Ω)) +Khm+1‖Θt‖L2(0,T ;Hm+1(Ω))+

KΔt2
∥∥∥∥D3Θ

Dt3

∥∥∥∥
L2(0,T ;L2(Ω))

, (52)

where β(t) is the error constant defined in (44) that depends on the solution u. �

PROOF. We set

Θn+1 −Θn+1
h = (Θn+1 − zn+1) + (zn+1 −Θn+1

h ),

≡ ρn+1 + ξn+1. (53)

To estimate ρn+1, we use zn+1 = RΘn+1 according to (47). Next, from Lemma 1 it follows that

‖ρn+1‖ ≤ Θhm+1‖Θ(tn+1)‖m+1, ∀ tn+1 ∈ [0, T ]. (54)

To estimate ξn+1, we introduce z̄n that is obtained from Rzn, then from (51) it follows that

zn+1 = Ehz̄
n + Eh(z

n − z̄n) + E2 + E3 + E4.

Next, taking into account the definition of ξ, we obtain from (28), (51) and with φ ∈ Vh,

ξn+1 = Ehξ̄
n + Eh(z

n − z̄n) + ShP0

(
(zn+1 −Θn+1)− (zn −Θn(Xn

h))
)
+

ΔtShP0

(
Θn+1 −Θn(Xn)

Δt
− DΘ

Dδ

∣∣∣
δ=δ′

)
+ ShP0

(
Θn(Xn)−Θn(Xn

h)
)
,

≡
5∑

i=1

Fi, (55)

where ξ̄n = z̄n −Θ∗n
h is obtained from ξn. Now, we estimate the Fi’s terms in the L2-norm.

Estimate of F1:

From (41) and the definition of Eh, we have

‖F1‖ ≤ ‖|Eh‖|‖ξ̄n‖ ≤ ‖ξn‖.

Estimate of F2:

‖F2‖ ≤ ‖|Eh‖|‖zn − z̄n‖,
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then, from the definition of Eh and the triangle inequality, we have

‖F2‖ ≤ ‖Θ̂n − ImΘ̂
n‖+ ‖zn − Θ̂n‖+ ‖ImΘ̂n − z̄n‖,

≡
3∑

i=1

F ′
i ,

where Im is the polynomial interpolant of degree m defined in (11). The approximation theory (12) and
Lemma 1 yield to

F ′
1 ≤ Khm+1|Θ(tn)|m+1, ∀ tn ∈ [0, T ].

Then, by Lemma 4, we have

F ′
2 ≤ Khm+1‖Θ(tn)‖m+1, ∀ tn ∈ [0, T ].

To estimate F ′
3, we obtain by using the same arguments as in [7]:

F ′
3 ≤ Khm+1‖Θ(tn)‖m+1,∞, ∀ tn ∈ [0, T ].

Now, taking into account of the F ′
i estimates and that Wm+1,∞(Ω) ⊂ Hm+1(Ω) and ‖Θ(tn)‖m+1 ≤

K‖Θ(tn)‖m+1,∞, it follows that

‖F2‖ ≤ Khm+1‖Θ(tn)‖m+1,∞, ∀ tn ∈ [0, T ].

Estimate of F3:

We have

F3 = ShP0

tn+1∫
tn

∂
(
z(x, t)−Θ(Xh(x, tn+1; t), t)

)
∂t

dt.

Since ‖|Sh‖| < 1 and ‖|Ph‖| are bounded, we obtain from Lemma 4

‖F3‖ ≤ Khm+1‖Θt‖L2(tn,tn+1;Hm+1(Ω)).

Estimate of F4:

By expanding in Taylor’s series the term F4 along the trajectories Xh(x, tn+1; t) with remaining inte-
gral, we obtain

Θn+1 −Θn(Xn)

Δt
−DΘ

Dδ

(
X(x, tn+1; δ

′), δ′
)
=

1

4Δt

tn+1∫
tn

(t− tn)(t− tn+1)
D3Θ(X(x, tn+1; t), t)

D3t
dt,

next, by definition of Sh and Ph, we obtain

‖F4‖2 ≤ K
(Δt)4

4

tn+1∫
tn

∥∥∥∥D3Θ(X(x, tn+1; t), t)

D3t

∥∥∥∥2 dt,
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which leads to

‖F4‖ ≤ KΔt2
∥∥∥∥D3Θ

D3t

∥∥∥∥
L2(tn,tn+1;L2(Ω))

.

Estimate of F5:

We have

Θn(Xn)−Θn(Xn
h) = (Xn −Xn

h)

1∫
0

DXΘn(Xn(α)) dα,

where Xn(α) = αXn+(1−α)Xn
h, for 0 < α < 1. By using the definition of Sh, P0 and from Lemma

3, we obtain

‖F5‖ ≤ K‖Xn −Xn
h‖‖Θ‖L∞(tn,tn+1;H1(Ω)),

then, by introducing (39) in the previous estimate, we have

‖F5‖ ≤ KΔt
(
‖u− uh‖L∞(0,T ;L2(Ω)) +O(Δtp)

)
‖Θ‖L∞(tn,tn+1;H1(Ω)). (56)

Then, by substituting (43) in (56) we have

‖F5‖ ≤ KΔt
(
β(t)hm+1 +O(Δtp)

)
‖Θ‖L∞(tn,tn+1;H1(Ω)).

By summing the estimates Fi’s, we obtain

‖ξn+1‖ ≤ ‖ξn‖+Khm+1‖Θ‖m+1,∞ +KΔt
(
β(t)hm+1 +O(Δtp)

)
+

‖Θ‖L∞(tn,tn+1;H1(Ω)) +Khm+1‖Θt‖L2(tn,tn+1;Hm+1(Ω)) +KΔt2
∥∥∥∥D3Θ

D3t

∥∥∥∥
L2(tn,tn+1;L2(Ω))

.

By using the Gronwall’s inequality, we have

‖ξn+1‖ ≤ ‖ξ0‖+K
hm+1

Δt
‖Θ‖L∞(0,T ;Wm+1,∞(Ω)) +K

(
max
t∈(0,T )

β(t)hm+1 +O(Δtp)
)
‖Θ‖L∞(0,T ;H1(Ω))+

Khm+1‖Θt‖L2(0,T ;Hm+1(Ω)) +KΔt2
∥∥∥∥D3Θ

Dt3

∥∥∥∥
L2(0,T ;L2(Ω))

. (57)

Hence, taking into account that ξ0 = 0, and using (53), (54) and (57) together with the triangle inequality
we obtain (52).

5. Numerical results

To examine the accuracy and performance of the proposed Galerkin-characteristics finite element
method, we present numerical results for a coupled convection-diffusion-Darcy problem. Note that com-
putations are carried out using triangular meshes with different element densities using the quadratic P2

elements for all the solutions. For completeness, we formulate the corresponding basis functions for the
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approximation space Sh in (3). Thus, using the standard mapping between the physical element with
coordinates (x, y) to the reference element with coordinates (ξ, η), the six basis functions are defined
by

φ1(ξ, η) = (1− ξ − η) (1− 2ξ − 2η) ,

φ2(ξ, η) = ξ (2ξ − 1) ,

φ3(ξ, η) = η (2η − 1) ,

φ4(ξ, η) = 4ξ (1− ξ − η) ,

φ5(ξ, η) = 4ξη,

φ6(ξ, η) = 4η (1− ξ − η) .

The obtained linear systems of algebraic equations are solved using the conjugate gradient solver with
incomplete Cholesky decomposition. In addition, all stopping criteria for iterative solvers are set to 10−7

which is small enough to guarantee that truncation errors in the algorithm dominate the total numerical
errors.

Tableau 1. Relative L2-error and convergence rates obtained for the pressure, velocity and concentration
solutions in the accuracy test example of the coupled Darcy-transport problem at time t = 0.5 and t = 1.

t = 0.5

Pressure p Velocity u Velocity v Temperature Θ

h Iter L2-error rate L2-error rate L2-error rate L2-error rate

1
16 14.1 8.66439E-04 — 5.83217E-01 — 6.14833E-01 — 9.34698E-03 —
1
32 13.3 2.35397E-04 1.88 1.54118E-01 1.92 1.61350E-01 1.93 2.38584E-03 1.97
1
64 12.2 6.26375E-05 1.91 4.01657E-02 1.94 4.20505E-02 1.94 6.00609E-04 1.99
1

128 11.1 1.60996E-05 1.96 1.02524E-02 1.97 1.06594E-02 1.98 1.47062E-04 2.03
1

256 10.5 3.88779E-06 2.05 2.54539E-03 2.01 8.52752E-03 2.05 3.40665E-05 2.11

t = 1

Pressure p Velocity u Velocity v Concentration Θ

h Iter L2-error rate L2-error rate L2-error rate L2-error rate

1
16 14.6 1.68771E-03 — 6.93119E-01 — 7.45832E-01 — 1.27173E-02 —
1
32

13.8 4.61713E-04 1.87 1.81895E-01 1.93 1.97089E-01 1.92 3.29145E-03 1.95
1
64 12.5 1.24573E-04 1.89 4.70774E-02 1.95 5.06575E-02 1.96 8.40153E-04 1.97
1

128 11.4 3.22415E-05 1.95 1.20166E-02 1.97 1.28412E-02 1.98 2.12970E-04 1.98
1

256 10.9 8.00469E-06 2.01 3.02504E-03 1.99 3.18812E-03 2.01 5.25095E-05 2.02
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5.1. Accuracy problem

We demonstrate the accuracy for the proposed Galerkin-characteristics finite element method using the
following time-dependent coupled convection-diffusion-Darcy equations

ν(Θ)u+∇p =
(
Θ+ f(x, y, t)

)
j, (x, y, t) ∈ Ω× [0, T ],

∇ · u = 0, (x, y, t) ∈ Ω× [0, T ], (58)
∂Θ

∂t
+ u · ∇Θ− κ∇2Θ = g(x, y, t), (x, y, t) ∈ Ω× [0, T ],

equipped with the following initial condition

Θ(x, y, 0) = 0 (x, y) ∈ Ω. (59)

In (58), j = (0, 1)	 is the unit vector in the upward direction and ν(Θ) = sin(Θ) + 2. The functions
f(x, y, t) and g(x, y, t) are calculated such that the exact solution of (58) is given by

u(x, y, t) = e−t/4curlψ, p(x, y, t) = (t+ 1) cos(πx) cos(πy),

Θ(x, y, t) = x2(x− 1)2y2(y − 12) sin(t),

where the function ψ is defined as

ψ(x, y, t) = e−100
(
(x−0.5)2+(y−0.5)2

)
.

A similar example has also been considered in [14] to validate an Eulerian finite element method. In
our numerical simulations, the spatial domain Ω = [0, 1]× [0, 1], the diffusion coefficient κ = 5× 10−4

and time step Δt = 0.05. Table 1 summarizes the averaged number of iterations in the linear solver,
the relative L2-error and convergence rates at times t = 0.5 and t = 1 for the pressure p, the velocity
u = (u, v)	 and the temperature Θ using different structured meshes with uniform step h. It is clear that
increasing the mesh density in the numerical simulations results in a decrease in the number of iterations
needed for the linear solver and in the relative L2-error for all variables and thus, a good approximation
for pressure, velocity and temperature solutions at both considered instants. Furthermore, the proposed
Galerkin-characteristics finite element method converges at about the same rate for all meshes and for all
solutions confirming a second-order accuracy as expected.

Figure 1. Mesh used in the simulations for the natural convection past an array of cylinders.
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5.2. Natural convection past an array of cylinders

In this example, we consider a natural convection problem in a channel past an array of circular cylin-
ders. Here, we solve the equations (1) in a channel of length L = 4 and height H = 1 with 64 circular
cylinders with equal diameter D = 0.0625 uniformly distributed in the second quarter of the channel at
the area [1, 2]× [0, 1]. A similar computational domain has been investigated in [8] using the incompress-
ible Navier-Stokes equations but for squared obstacles. In our computations, the source terms f = 0

and g = 0, and a nonlinear viscosity defined by ν (Θ) = Θ2 + 2 is used in (1). Here, the left and right
vertical walls are respectively, at dimensionless temperatures Θ = 0.5 and Θ = −0.5 whereas, the top
and bottom walls are insulated. No-slip boundary condition is imposed at all cylinder walls and results
are presented for the diffusion coefficient κ = 10−3, 5× 10−4 and 10−4. Initially, the flow is at cold rest
i.e., u = 0 and Θ = −0.5.

κ = 10−3 κ = 5× 10−4 κ = 10−4

Figure 2. Temperature distributions obtained at t = 2 (first row), t = 4 (second row), t = 6 (third row),
and t = 8 (fourth row) obtained for the natural convection past an array of cylinders using κ = 0.001

(first column), κ = 0.0005 (second column) and κ = 0.0001 (third column).

Based on a mesh convergence study not reported here for brevity, the unstructured triangular mesh
depicted in Figure 1 with 10911 elements and 24116 nodes is used in our simulations as it offers a
compromise between accuracy and efficiency in the numerical method. Here, the quadratic P2 elements
are used to approximate the temperature, velocity and pressure in our Galerkin-characteristics finite
element method. In Figure 2 and Figure 3, we display the results obtained for the temperature and
velocity fields at four different instants namely, t = 2, t = 4, t = 6 and t = 8. To examine effects of
diffusion in the moving thermal front past the cylinders, we present numerical results for three different
cases with κ = 10−3, 5× 10−4 and 10−4. It is clear that both the temperature patterns and velocity fields
are influenced by the values taken by the diffusion coefficient κ. At earlier time of the simulation, the
thermal front released from the left wall of the channel starts to develop and it is transported later on
by the flow past the obstacles at downstream channel. Figure 2 indicates that the thermal fronts moving
downstream past the cylinders at different speeds depending on the value of the diffusion coefficient
κ taken in the simulations. The results also indicate that as κ decreases, the size of the transport speed
increases with the thermal front exhibiting steep gradients with different magnitudes, thin boundary layer,
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and separating shear layers. It is worth remarking that for κ = 10−4, the problem becomes convection-
dominated and steep fronts along with shock solutions are expected to appear in the temperature solution.
We can see that the small complex structures of the temperature being captured by the proposed Galerkin-
characteristics finite element method. Note that the performance of our method is very attractive since
the computed solutions remain stable and highly accurate even when a relatively coarse mesh is used
without requiring small time steps and mixed finite element discretizations or special pressure correction
procedures.

κ = 10−3 κ = 5× 10−4 κ = 10−4

Figure 3. Velocity fields obtained at t = 2 (first row), t = 4 (second row), t = 6 (third row), and t = 8

(fourth row) obtained for the natural convection past an array of cylinders using κ = 0.001 (first column),
κ = 0.0005 (second column) and κ = 0.0001 (third column).

Figure 4. Cross-sections at x = 2.1 of the temperature (left) and u-velocity (right) obtained for the
natural convection past an array of cylinders at time t = 6.

To further demonstrate these effects, we compare in Figure 4 vertical cross-sections at x = 2.1 of
the temperature and velocity u at time t = 6 for the considered values of the diffusion coefficient κ.
It should also be pointed out that in our simulations for this problem, the number of iterations in the
linear solver to reach the selected tolerance do not overpass 15 iterations for all considered mesh and
values of κ. Taking into account this increase in the velocity field along with the considered values of
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κ, the flow appeared to change regimes. For the considered heat transfer conditions, it can be clearly
seen that the complicated temperature and flow structures being well captured by the proposed Galerkin-
characteristics finite element method. In fact, the computed solutions reveal the physics well in this
test example for coupled Darcy-transport problems. It should be stressed that the performance of the
proposed method is very attractive since the computed solutions remain stable and highly accurate even
when coarse meshes are used without requiring nonlinear solvers or small time steps to be taken in the
simulations. In addition, the presented results clearly indicate that this method is suited for prediction of
natural convection in porous media.

6. Conclusions

In the current work, we have presented analysis of a Galerkin-characteristics finite element for solving
convection-diffusion problems in porous media. The governing equations consist of a nonlinear Darcy
problem for the flow field and pressure coupled with a time-dependent convection-diffusion equation for
the temperature. The coupled system has been integrated using a Galerkin-characteristic finite element
method which combines the semi-Lagrangian method for the time integration with the Galerkin finite
element method for the space discretization on unstructured grids. A study of stability and convergence
have been then demonstrated and an optimal a priori error estimate has been established for the pro-
posed method. The proposed Galerkin-characteristics finite element allows for the same finite element
space to be used for all solutions to the problem including the pressure, velocity and temperature. As a
consequence, the proposed method avoids the mixed finite element discretizations which require more
computational cost related to the mesh generation and the element matrix assembly. Furthermore, the
proposed Galerkin-characteristic finite element method is suitable for complex geometries, independent
of the sizes and arrangement of the mesh elements, and it can easily combine different polynomial orders
of elements. Numerical results have been presented for an accuracy test example with known analytical
solutions. The method has also been applied for solving a natural convection problem past an array of
cylinders in porous media and the obtained results exhibited good shape, high accuracy and stability be-
havior for all transport regimes considered. In addition, the presented results demonstrate the capability
of the proposed Galerkin-characteristic finite element method that can provide insight to complex cou-
pled nonlinear Darcy-transport features. Future work will concentrate on the extension of this method to
convection-diffusion problems in three-dimensional porous media using high-order unified finite element
discretizations on unstructured meshes.
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