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ABSTRACT. All effective agents are context-sensitive. This is true for biological agents, and it must also be true for
artificial agents if they are to succeed. Context-mediated behavior (CMB) is one approach to endowing artificial agents
with context-sensitive, context-appropriate behavior. It relies on explicitly representing contexts — important classes of
situations — as contextual schemas and associating with them all the relevant knowledge about that context. The agent
can then use these c-schemas to assess its context and their knowledge to behave appropriately. In this paper, we
provide an overview of CMB, review the past work on it, discuss what we have learned from more than twenty years of
working on the problem, and describe where we are and where we are going with CMB.
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Over the past few decades, there has been an increasing realization that an agent’s context heavily
influences its perception of the world, its decision processes, and its actions, as well as its interactions
and communication with others. While this may have originated in linguistics (and computational
linguistics) and philosophy, interest in context quickly spread to many other fields, including cognitive
science and psychology, neuroscience, computer science, and computing applications engineering, to
name only some.

The emerging consensus is that virtually everything an agent — natural or artificial — does is either
affected or even determined by its context. For some agents, there is no conscious attention to the
context; 1.e., it is not something to be recognized and reasoned about, but rather the context implicitly
affects behavior by sensory information being properly linked to behavior, for example, through
operant conditioning or other learning.

Humans also are affected by context without often being consciously aware of it. Consider a
person’s behavior when entering a church or a library: it is likely that they will lower their voice,
refrain from running, respect the authority of the priest or librarian, and so forth — all without conscious
thought. However, we can explicitly recognize our context and base our actions on that knowledge. A
good bit of effort may be expended, for example, to determine what our context is, if we don’t
immediately recognize it. For example, think about situation assessment on the battlefield or a doctor’s
effort to diagnosis a patient’s problem so that he or she can treat the patient in a context-appropriate
manner (prescribe the correct medications, etc.). And we can, if need be, even recognize and reason
about contexts that would usually implicitly affect us, such as being in a church or a library.

The questions that have motivated our research on context-sensitive reasoning are: What ad-
vantages are conferred by explicitly recognizing the context? Should we emulate that ability in
artificial agents? And, if so, how?

Explicitly recognizing the context would seem to cognitive require effort; what does that effort buy?
Consider an agent whose behavior is conditioned on its context solely via its sensory input. Many
different contexts may look the same based on the percept stream. We would not be very happy with a
doctor who noted our cough, fever, pallor, and malaise, and immediately prescribed chemotherapy
without considering other diseases, more common and more likely than lung cancer, such as influenza or
just a common cold. Instead, the surface percepts (cough, etc.) might suggest one of several different
disease contexts, and the doctor would then order tests to distinguish between them to arrive at the correct
diagnosis. From there, he or she could prescribe the best treatment. Similar examples can be found in
other domains, for example, distinguishing between the context of being ambushed from that of
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unexpectedly encountering friendly forces, or for an autonomous underwater vehicle (AUV) between
the contexts of being in a strong current and being stuck in seaweed.

When we consider other than sensory aspects of a human’s context, then the utility of context
recognition becomes even more evident. For example, if a person is in a kitchen in which a pot is
boiling, his or her response (turn down the heat, leave it alone, tell someone) should differ depending
on whether he or she is the person who put it there or if it was someone else: that is, based on the
context, which in this case includes knowledge of goals and past actions.

So, in humans at least, it seems that the ability to recognize and explicitly reason about the context
affords the ability to behave more appropriately for the context than if the context was unrecognized.

In addition, by treating contexts as first-class concepts, humans can share knowledge with others
about how to behave in the context. If we consider having a patient with a particular disease as a
context, then we can think of much of medical school and beyond as the process of communicating
about contexts. The same is true for other more mundane situations. For example, when teaching
someone to drive in winter, one may tell the learner such things as “if you are approaching a curve and
you can’t see the road ahead, slow down: there may be snow or ice”; this is describing a context and
how to behave in it.

Finally, being able to refer explicitly to a context can help someone learn how to behave in that
context. If some action often does not work in a particular context, then by being able to recognize the
context as an entity allows the person to not to try the action (or at least be wary of it) in the context in
the future.

What about artificial agents and context? Some early work did represent contexts as first-class
objects in formal logic, most notably McCarthy [25], Guha [17], and Suvac¢ and colleagues [6], and
some work in applications also represented contexts explicitly in a limited fashion, for example, Aikins
[1] and Chandrasekaran and colleagues [14]. However, such work was the exception. Throughout
much of the early history of artificial intelligence (Al). For example, context certainly affected the
behavior of planners, theorem provers, neural networks, and rule-based reasoners, but it was not
usually through representing the context as a distinct thing. Instead, context was encoded, somewhat
reminiscent of the implicit use of context by animals, as preconditions on plan steps, antecedent
clauses in implications, left-hand sides of rules, or weights in networks.

More recently, and especially with the formation of the community of researchers associated with
the CONTEXT conference series [5] in 1997 as well as those associated with ubiquitous
computing/context-aware applications, context as a thing in its own right has become a very active area
of research. While not all of this spate of research is focused on explicit context representation for
agents, several strains of research have been, notably that of Brézillon (e.g., [4]), Guha and Lenat (e.g.,
as discussed in [32]), and Gonzalez (e.g., [16]).

The author’s own work on the explicit representation of context began in his PhD research on
medical diagnostic reasoning in the mid-1980s. This evolved into the approach to contextual reasoning
called context-mediated behavior (CMB) [42], part of schema-based reasoning [39] and an off-shoot of
case-based reasoning (e.g., [22]).

Context-mediated behavior is based on the idea of explicitly representing an agent’s contexts as
contextual-schemas (c-schemas), each containing all the agent’s knowledge about the context
represented. In our approach, a context is a class of situations that has implications for an agent’s
behavior [42]. For example, “being in a harbor” is a context for an autonomous underwater vehicle that
has implications for how it maneuvers, how it understands sensor data, and so forth. Many different
situations are instances of this context, for example, being in New York harbor, being in a harbor
where there are strong tides, being in Norfolk harbor last Tuesday, and so forth.
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When an agent enters a new situation, it attempts to diagnose the situation as an instance of one or
more known contexts. These are merged into an explicit context representation, which is then used by
the agent to guide all facets of its behavior, including typically such things as setting behavioral
parameters, handling unanticipated events, activating/deactivating and scheduling goals, achieving
goals, and even more abstract facets of reasoning, such as a context-dependent understanding of
concepts. This happens fairly automatically once the context is identified, requiring little additional
reasoning on the part of the agent, and indeed likely saving quite a bit of effort. The result is behavior
that 1s automatically context-appropriate.

This paper reviews the past almost three decades of work on context-mediated behavior, con-
centrating on lessons learned and promising directions for the future. We first discuss the principles we
believe should underlie any approach to context-sensitive reasoning, based on our experience with
developing CMB. We then describe context-mediated behavior, including where it came from, what
the overall process is, and what its contextual schemas contain. We next look at using CMB in agents
using several different reasoning styles. The acquisition and learning of c-schemas is next discussed,
followed by a look at the current status of the work and future directions.

1. Principles for context-sensitive reasoning

Over the years, we have had cause and opportunity to reflect on the principles that we believe
should underlie any approach to contextual reasoning.

Contextual knowledge should inform all of an agent’s reasoning. It is difficult to imagine
arguing for an agent not taking into account its context when reasoning about how to behave. Almost
by definition, successful behavior is behavior that is appropriate for the current situation (context). This
1s true not only of overt behavior — taking action — but also of the “internal behavior” of the agent, such
as making sense of its surroundings, making inferences and decisions, and so forth.

Contextual knowledge and contexts themselves should be explicitly-represented, first-class
objects. Some kinds of reasoning make use of contextual knowledge, but do not explic-itly represent
contexts per se. For example, rule-based reasoners and planners represent contextual knowledge as
antecedent clauses and preconditions (respectively), but do not except in rare cases (e.g., [2]) have
anything like a notion of what the context actually is.

There are several important benefits to representing contexts as first-class objects. Doing so allows
the agent to reason about contexts as entities in their own right, and so be able to acquire targeted
knowledge as well as to learn from its own experience how to behave in the context. Explicit
contextual representation also allows an agent to commit to being in a context, in the sense of believing
it to be in the context. This can bound the agent’s inferences, potentially even allowing the agent to
hold contradictory, but useful, beliefs by compartmentalizing them into different contexts (see, e.g.,
[24, 17]).

While the above benefits can accrue to a reasoner that simply asserts that it is in a named context
(e.g., as a result of theorem proving), if contexts are instead considered to be knowledge structures,
then there is an additional benefit. A context knowledge structure can contain all the agent’s
knowledge about a particular context in one place. This makes reasoning about how to behave in the
context more efficient, since reasoning can be local to the context, involving primarily the appropriate
contextual knowledge. While some work must be done to determine what the context is, after that,
reasoning can be quick and sometimes even automatic.

'We consider the “context = x” assertion in some rule-based reasoners to be a somewhat degenerate case, since
this is used mostly as a filter condition for rules. Similarly for the “filter” conditions in some planner’s plan schemas.
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While the above benefits can accrue to a reasoner that simply asserts that it is in a named context
(e.g., as a result of theorem proving), if contexts are instead considered to be knowledge structures,
then there is an additional benefit. A context knowledge structure can contain all the agent’s
knowledge about a particular context in one place. This makes reasoning about how to behave in the
context more efficient, since reasoning can be local to the context, involving primarily the appropriate
contextual knowledge. While some work must be done to determine what the context is, after that,
reasoning can be quick and sometimes even automatic.

Contextual knowledge can be acquired from others, but should also be learned from the
agent’s own experience. Like any other kind of knowledge, contextual knowledge, including
knowledge of which contexts are important, can be acquired from others. Grouping all knowledge
about a context together facilitates knowledge acquisition, and explicitly representing the context
allows the human to focus on targeted questions, e.g., “in the context of being in a harbor, what depth
should be considered nominal?”

An agent should always have an understanding of what its current context is. That is, it should
always some context knowledge structure identified as representing the current situation. This is
important for the agent to perform reasoning quickly and efficiently. For real-world agents, this is
critical, since often unanticipated events occur that demand an immediate response, or the agent’s
mission, the agent, or both may be in jeopardy. By having a good idea of what the context is,
knowledge about how to respond to events is immediately at hand for the agent. In the most extreme
case, and depending on the underlying reasoning method of the agent, the knowledge contained in the
context representation may serve as a set of reflexes that the agent can carry out in response to events
with no reasoning needed at all.

There are times, of course, when an agent is in an unfamiliar situation and may have no specific
context representation for it. There are two ways a context-aware agent can still have the advantage of
using contextual knowledge, even in this case. First, it is important for contexts to be composable, so
that a situation that is similar to several known contexts can be handled by finding and composing
those contextual representations into a new one that can provide guidance in the situation. For
example, an AUV may know about being in the context of having low power and also the context of
being in Portsmouth (NH) harbor, but has never encountered the situation of being in that harbor while
power is low; by merging these two context representations, however, it may be able to determine how
to behave appropriately in the novel situation.

Second, it is important for context representations to be related to one another by, in particular,
generalization—specialization relations. This is a natural outcome of using a dynamic memory such as
we mentioned above: the memory organization structure is such that more general schemas index more
specific ones in a tangled discrimination net-like scheme. Such a memory then returns automatically
the most similar schemas to the current situation. If this type of memory is not used, it is still important
to be able to have generalization—specialization relationships between the context representations so
that, starting at a very general context representation (e.g., “we’re in some context”), other, more
specific ones can be found using features of the situation. This way, even if the current situation is not
an instance of any specific known context, it will be an instance of some context that can provide at
least some guidance. For example, an AUV may never have been in Brest (France) harbor, but if it
knows about being in harbors in general, it will have a pretty good idea of how to behave; if it knows
about more particular contexts (being in French harbors, which may have different rules, etc., from
ones it is used to), then it may be able to behave even more appropriately.

Context representations should represent the smallest useful contexts that cannot be re-
created easily from others. One reason for this is to address the potential for an explosion of context
representations as the agent gains experience. As mentioned previously, an agent should be able to use
multiple context representations to represent a novel situation by merging the contextual knowledge
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they contain. The agent could just store this merged representation as a new context knowledge
structure. However, if it does this for each novel context that is different from existing ones, it will
ultimately end up with a plethora of contexts, potentially one for every possible combination of the
ones it began work with.

A better approach is to store a new context representation only when it adds something new to the
agent’s context repertoire. Thus if the knowledge from a merged context worked perfectly in the new
situation, there is no reason to store it: it can just be re-created from the same representations should the
situation be encountered again. On the other hand, if some knowledge was needed but not present in the
merged context, or if predictions failed or behavior was inappropriate, then the merged context should
beremembered so that the new knowledge can be found or the errors avoided the next time an instance of it
1s encountered.

An argument can be made for storing some merged context representations, however, to “op-
erationalize” contextual knowledge. Context merger can be quite difficult and time-consuming. In
cases where the merger was particularly difficult, it may make sense to store the merged representa-tion to
safe work in the future. One should be careful of this, however, since anything new learned about one of
the component contexts will not affect the stored context next time it is used, whereas it would have had
the context not been stored, but rather re-created.

Context assessment is diagnosis. Assessing the current context involves matching the currently-
observed set of situational features to those predicted by the known context representations to find the
best fit. This is inherently an abductive or hypotheticodeductive process (e.g., [29]) that involves more
than just a simple pattern-matching process. It is almost exactly analogous to the problem faced by, for
instance, a doctor when deciding what is wrong with a patient: features of the situation (in that case, signs

and symptoms, lab reports) are compared to the doctor’s known contexts (“patient has the flu”, “patient
has tuberculosis”, etc.) to find the best fit.

Thus, context assessment is a diagnostic process. This means that a context-sensitive agent’s
designers can benefit from the vast body of research on medical diagnosis. One thing that doctors do
that is very beneficial for context assessment is differential diagnosis (e.g., [10]), in which similar
disease hypotheses are compared to determine information that can rule in/out some of them. This
focused information gathering is also of use in assessing the context. For example, if an assistive
agent’s patient is complaining of not feeling well, the agent might hypothesize two different contexts to
explain it: the patient is ill, or the patient did not take his medicine. Differential diagnosis would
identify a simple action (count the pills remaining) that could distinguish between the two hypotheses.

Identifying and using appropriate contextual knowledge should be as automatic as possible.
Ideally, identifying and using contextual knowledge should require no effort on the part of the agent,
which is, of course, unrealistic. However, we should strive for the process to be as automatic and
efficient as possible, since we are ultimately interested in the agent carrying out its tasks rather than
spending time identifying its context. We have touched on one aspect of this above: the agent should
expend effort identifying the context only once, then use the contextual knowledge associated with the
context representation until the situation changes sufficiently to warrant a new round of context
diagnosis. We should also find the most efficient way for context representations to be found in the
agent’s memory.

Contextual knowledge and reasoning about the context should be as separate as possible
from domain-level reasoning. There are several reasons for this. First, by separating the two things, we
may be able to make better use of processing resources, for example, by running the contextual reasoning
during idle times or even on a separate processor. Second, it is good programming practice in general to
separate a program’s “concerns” into different modules or objects, and the same is true here. Contextual

reasoning is likely to be different from domain-level problem-solving reasoning, and so it makes sense
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to separate the two. This facilitates development and debugging, and it isolates changes in one concern’s
code from the others.

Third, since context is something that all agents need to be aware of and responsive to, we would
like contextual reasoning to be applicable to as many different kinds of agents as possible, even if their
reasoning style is different from what is needed for context assessment or needs to be opaque to
developers working on contextual reasoning (e.g., if the agent’s performance element’s code is
proprietary or secret). For example, in our own work we have used the same contextual reasoning
mechanism for both plan-based and neural network-based agents. While the domain-level knowledge
stored in the c-schemas in these agents was necessarily different, the knowledge about contexts,
including the structures used to represent them (c-schemas), was the same.

When dealing with other agents, being able to reason and communicate about the shared
context is important. Agents, except in rare cases, do not exist in isolation, but rather interact with
other agents (human and/or artificial). Consequently, their context also includes the other agents, and
in order to predict how the others will behave, it would make sense to have an idea about their contexts
and beliefs.

The field of context-aware applications (e.g., [9, 28]) is concerned with this, but quite often the
notion of context in that work is somewhat circumscribed (e.g., location, user intent, etc.) compared to
that needed for, say, autonomous agents. Nevertheless, we can build on the foundation they have laid,
as well as on work done in user modeling in other areas, to develop representations for contexts having
to do with humans. Similarly, work in multiagent systems (and before that, in distributed Al) has
looked at how agents can model the beliefs and so forth of other agents being cooperated with, and that
can be incorporated into contextual reasoning as well.

We should go further, however. It is important for cooperation and coordination that participants
agree on what the context is. Early research on this included Sycara’s [34] “assumption surfacing” and
argumentation in general to get both sides in a labor dispute to agree on a shared context (though those
terms were not used) to facilitate negotiation, and work on partial global planning (PGP) [8] in
distributed Al can be viewed as a way of getting multiple agents to negotiate to arrive at consensus
about what their overall planning context should be (again, not in those terms). More recent work
includes our own approach to distributed contextual reasoning in multiagent systems, which uses
explicit representations of context as a basis for communication about and agreement on the context of
multiagent interactions [45].

2. Origin of context-mediated behavior

Context-mediated behavior has its roots in case-based reasoning [20] and hierarchical reactive plan-
ning (e.g., [26, 13]). Many early case-based reasoners, such as Persuader [34], Mediator [21], and CAS
[38], used a content-addressable dynamic memory [31] based on the CYRUS program [19]. As a by-
product of indexing new cases in memory, structures called memory organization packets (MOPs) [31]
are created by this type of memory. In previous work, the cases were primarily the focus for problem
solving. However, it seemed to the author that many, if not most, kinds of reasoning proceed from
generalized cases, with specific cases only being used when no such generalized problem-solving
knowledge is available or to augment such general knowledge. In other words, generalized cases — the
MOPs, which are created by similarity-based learning from cases as they are stored — were being
created but not fully utilized.

This realization led to a reasoning style called schema-based reasoning (SBR) [39] in which the
generalized cases stored in MOPs are used as schemas to drive reasoning. Three kinds of schemas were
identified: procedural schemas (p-schemas), contextual schemas (c-schemas), and strategic schemas (s-
schemas).
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Procedural schemas are the procedural elements extracted from past cases and generalized cases of
problem solving. They can represent anything from general goal-decomposition guidance, to
hierarchical plans, to specific rules. They are applied in much the same way as plan schemas were the
earlier NASL [26] and contemporary PRS [13] hierarchical reactive planners.

Contextual schemas are the generalized cases (and generalizations of generalized cases, and so on).
In the original work on the MEDIC medical diagnostic program (e.g., [36, 39]) they represented
generalized cases of diagnostic sessions and were called diagnostic MOPs (dxMOPs). As it became
apparent that they were actually representing MEDIC being in a particular diagnostic context and were
more general than just being diagnostic, they were renamed to reflect their role as general contextual
knowledge structures.

Strategic schemas were meta-reasoning knowledge structures that governed the overall manner of
reasoning. Whereas c-schemas were seen as tactical problem-solving structures, s-schemas were seen
as more strategic. For example, the difference between how a novice diagnostician (e.g., a medical
student) diagnoses a patient and how an expert does so was represented by an s-schema that modified
how knowledge from p-schemas and c-schemas was applied.

While the ideas behind p-schemas and c-schemas continued to be pursued in later work on
intelligent control of real-world physical systems (e.g., [46, 39]) and on to the present work being
discussed in this article, s-schemas were not pursued. As we discuss later, however, it may be that the
notion of strategic knowledge needs to be resurrected, either as a separate kind of knowledge structure
or as “meta-c-schemas” representing such things as “being an expert”, “being a novice”, and so forth.

3. Overall CMB process

The process of CMB has changed over the years. Here, we will describe the current version, similar
to what was reported in [43].

The overall CMB process is embodied in what we call a context manager, which we name ConMan.
ConMan can be an integrated part of an agent’s reasoning process (e.g., in Orca [40, 39]), or it can be
an independent module that communicates with and provides contextual knowledge to the rest of the
agent [43].

A sketch of ConMan’s process is shown in Figure 1. When the agent is initialized, the context must
first be assessed, as discussed below, by finding a set of c-schemas in its schema memory that
characterize the current context. These are merged to form a structure, called the CoRe (Context
Representation), that represents the current context.

The CoRe is a part of ConMan’s situation representation (SitRep). Another part is the working
memory, which holds information about the situation that has been provided by the other parts of the
agent, for example, sensor data, messages from other agents, actions taken, and commitments to
actions.
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Figure 1. Overview of CMB process

Once the context has been assessed, ConMan then disseminates contextual knowledge to other parts
of the agent that have requested it (e.g., when the agent and ConMan were configured). For example, if
the agent has a module concerned with handling unanticipated events, then at start-up time, ConMan
can be configured to automatically send contextual event-handling knowledge to that agent from the
CoRe whenever the context changes.

After this, ConMan enters a monitoring mode. While in this mode, it services any requests from
other parts of the agent for contextual knowledge, and it places in working memory any information
received from the rest of the agent about the state of the world. If during monitoring ConMan
determines that the situation has changed enough that the CoRe is no longer an adequate representation
of the context, then it reassesses the situation.

One source of information about whether context assessment is again needed comes from the c-
schemas comprising the CoRe. These can either explicitly state conditions under which they no longer
would apply (cf. [48]), or predictions made by them may be violated to the extent that the monitor
function realizes that there is a mismatch.

Another source of information comes from ConMan’s schema memory. This is intended to be a
semi-autonomous agent inside of ConMan that watches the working memory and, when there is a
change, searches its memory structures for new c-schemas that the working memory “reminds” it of
[19]. For example, if the depth is decreasing and there is traffic on the surface, an underwater vehicle’s
schema memory might be reminded of the context of being in a harbor. When schema memory places
new c-schemas in the working memory, this should alert the monitor function that context
reassessment may be necessary.

In the next few sections we first focus on how contexts and contextual knowledge is represented as
contextual schemas, then we discuss the parts of the process in more detail.
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4. Contextual schemas

The primary knowledge structure in context-mediated behavior is the contextual schema. A c-
schema represents a particular context that the agent knows about and contains all of the agent’s
knowledge about that context: what it is, how to recognize it, what things mean it may observe while in
the context, and how to behave in it.

Contextual Schema

Descriptive knowledge

Diagnostic knowledge

[ Entry conditions ) Exit conditions

Predictions

Concept definitions

Agent-specific
Prescriptive knowledge

[ Schema memory organizational information

Figure 2. General structure of a contexual schema

Figure 2 shows a graphical representation of a c-schema for any CMB agent. There are two major
parts, descriptive knowledge and prescriptive knowledge. In addition, depending on the schema
memory used, there may be additional organizational/indexing knowledge associated with the c-
schema to link it to other c-schemas.

Descriptive knowledge is knowledge about the context itself. The bulk of this knowledge is usually
predictions about the features of situations that are instances of the represented context. For example, a
c-schema representing the context “driving an automobile” would predict that the agent is in (or part
of) a car, the car is on a roadway, there will be movement, and so forth. This knowledge can be used to
flesh out the agent’s understanding of the situation by providing default features to assume are present
as well as to make predictions about what may happen in the future.

The predictions also overlap with the diagnostic knowledge in the scheme. This is knowledge that is
used by ConMan to diagnose the current situation as being an instance of the context, as we discuss
below. The satisfaction of some predictions may be diagnostic or partly diagnostic for the c-schema,
for example. For instance a c-schema representing “being in a mined harbor” would predict diagnostic
features such as the presence of multiple stationary sonar contacts and that the location is hostile
territory. If these predicted features are present, then this would increase the context manager’s
confidence that this c-schema is a good representation of the current context. Some features might even
be “pathognomonic”, that is, so characteristic of the situation that diagnosis becomes trivial; e.g., if
several redundant sensors all report a leak, then that is pathognomonic for the context of “leaking”.
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A special case of this type of diagnostic knowledge is an entry condition: something that must be
true in order to conclude that the agent is actually in the context. For example, for an assistive agent to
consider itself in the context “at the patient’s home”, the location must be consistent with being there.

Other diagnostic knowledge has to do with knowing when the c-schema no longer fits the sit-
uation, that is, when the situation has drifted enough to be considered another context (cf. [50]). This
can help the context manager, while monitoring the evolving situation, to decide that context
reassessment is in order.

A final kind of descriptive knowledge is context-specific definitions of concepts (see, e.g., [41]).
Some concepts mean different things in different contexts. For example, “too warm” means some-
thing different to an assistive agent in the context “preparing food for patient” than in the context of
“monitoring the home environment”; in the latter, a temperature of 30°C might be too warm, while in
the former it might be 50°C.

Although the kinds of descriptive knowledge present in CMB’s c-schemas are the same for all
agents, the representation of and ontology for the knowledge will depend at least in part on the kind of
agent. For example, when part of Orca, the system in which most of the work on CMB is done, the
descriptive knowledge is represented in the agent’s own frame-based knowledge representation,
augmented with some CMB-specific, description logic-based knowledge about contexts themselves.
When used in an agent that uses a different knowledge representation and/or ontology, ConMan would
still use its own knowledge representation for some things (e.g., entry, and exit conditions), but it
would need to either use the agent’s for the rest or to have the ability to translate back and forth
between the two representations. In the most extreme cases, for example, when working with a neural
network-based agent, there may be little descriptive knowledge that the agent can use or would need;
in that case, the knowledge would be limited to what ConMan itself needs to assess the context.

A c-schema’s prescriptive knowledge is what tells the agent how to behave appropriately in the
context. What is contained in this part of a c-schema very much depends on the kind of agent. As this
differs substantially from agent to agent, we will discuss this in more detail below when discussing
using CMB with different kinds of agents.

4.1. Assessing the context

Context assessment is a diagnostic process of determining the context based on a set of situational
and agent features. While any diagnostic reasoning approach would work, CMB uses a differential
diagnosis algorithm from the field of Al in medicine based on the work of Pople and Miller [27] and
Feltovich and colleagues [10].

In this approach, context hypotheses are generated based on which c-schemas are evoked — brought
to mind — by what the agent knows about the current situation. Schemas are evoked based on rather
superficial matches between themselves and the current situation: the stove being on may remind a
care-giving agent of the patient being in the context of cooking, of past patients being in the context of
cooking, and of the patient’s son cooking when he visits. This is similar to, in medical diagnosis, a
finding of “cough” bringing to mind a host of things, including the common cold, the flu, bronchitis,
and lung cancer.

Just as we would not wish for a doctor to conclude that we have lung cancer just on the basis of
having a cough, we do not want a context manager to decide that the patient’s son is cooking just
because the stove is on. In both cases, more reasoning effort needs to be expended to determine, based
on a deeper analysis of differential diagnosis, what the actual disease or context is.
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Differential diagnosis is the process of comparing and contrasting hypotheses, based on available as
well as acquired information, to distinguish between them. Hypotheses are first grouped into logical
competitor sets (LCSs) [10] such that each LCS contains hypotheses competing to explain the same set
of features.

Hypotheses are scored based on what they explain and do not explain and about failed predictions.
The LCS with the top-ranked hypothesis is then selected, and the context manager attempts to “solve”
it by winnowing its membership down to one hypothesis. This is done by either performing additional
inferencing based on available knowledge and/or acquiring additional information. In either case, the
context manager is guided by the available hypotheses: it seeks to separate the ranking of one versus
the others based on what information one predicts that others do not.

For example, if an AUV, low on power, finds itself in shallow water and does not have a good idea
of where it is (e.g., if it is prevented by the mission parameters from surfacing to obtain a GPS fix), it
may have several hypotheses about its context, including: having low power; being in a harbor; being
in an estuary; and being over a sandbar. Based on these evoked c-schemas, it would group them into
two LCSs: one having the single hypothesis of having low power, and the other containing the
hypotheses that all explain shallow water. Suppose that the latter is selected for solution. By comparing
the context hypotheses, the context manager would notice some things that could distinguish between
the c-schemas: the presence of a nearby shoreline on multiple sides would tend to support being in an
estuary or harbor rather than being over a sandbar; the presence of surface traffic would support being
in a harbor more than either of the other two; low salinity would tend to support being an estuary; and
so forth.

We should mention that while using knowledge already available can often be enough to de-
termine the context, sometimes actions need to be taken to gather additional knowledge, much as a
doctor does when he or she orders laboratory tests. So far, we have tended to ignore this in our work,
since seeking information by taking actions not only takes time, and so delays context assessment, but
also requires collaboration between the context manager and the rest of the agent’s reasoning processes
to prevent interfering with the primary tasks of the agent. We will consider this problem more in future
work.

Once information has been gathered, all of the hypotheses are re-scored and new LCSs are created
(since inferences or new information may have uncovered new features to be explained) and the
process continues until one hypothesis is sufficiently ahead of the others in terms of scoring. At that
point, that hypothesis is considered confirmed (and its LCS solved) and its competitors are deleted
from further consideration.

At this point, the context manager is committed to one c-schema as representing the current context.
However, just as a person can have multiple diseases, an agent can be in multiple contexts
simultaneously: e.g., low power and in a harbor. Consequently, the process continues until all LCSs
have been solved, leaving a set of c-schemas that, together, characterize the current context.

Diagnosis is complete at this point. However, to be useful, the knowledge from all the c-schemas
just found needs to be merged to create a coherent context representation, which we call the CoRe. We
have looked at this problem in some detail [43]. For the present purposes, we only really need to note
that it is a very difficult problem that may, itself, be (meta-)context-dependent. For example, suppose
that the depth envelope suggested by one c-schema is 2—-10 m, but by another is 15-20 m. Should the
merged result be 2—15 m? Or one of 2—10 m or 15-20 m? Or the discontinuous envelop of 2—10 m or
15-20 m, but not 10—15 m? It depends in part on why the c-schemas suggest the envelopes they do,
which may or may not be pertinent given the particular features of the current situation. And this is for
the simplest case, numeric ranges. We have yet to solve the merger problem in a general way, though it
1s a focus of ongoing and future work.
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5. CMB in different kinds of agents

In this section, we look at how CMB has been and can be used in agents employing different kinds
of reasoning and at the kinds of prescriptive contextual knowledge important for each.

5.1. Schema-based reactive planners

A schema-based reasoner is one that represents all of its problem-solving knowledge in an explicit
form as schemas, then retrieves and interprets those to control its behavior. As noted previously,
schema-based reasoning grew out of research on case-based reasoning and on hierarchical planning
and acting. We coined the term adaptive reasoning to refer to the particular kind of schema-based
reasoner we are interested in, one that can change its behavior to fit the needs of the moment as well as
over the long term, and that can do both in a context-sensitive fashion.

MEDIC [37, 39] was the first schema-based reasoner. As its name suggests, it was a medical
diagnostic reasoner, working in the domain of pulmonology. The focus in the MEDIC project was not
on creating a system capable of expert-level diagnosis, but rather on investigating how to capture in a
computer program diagnostic reasoning of the sort seen in doctors. Consequently, more attention was
focused on the process of diagnosis than on acquiring and using expert knowledge.

MEDIC gave rise to the first contextual schemas, then called “diagnostic MOPs” (dxMOP). These
contained such things as goals for the consultation, particular disease hypotheses to consider, findings
expected, suggestions for how to establish hypotheses in the context, and event-handling information,
where events in that system were interruptions from the user, the creation of new findings (e.g., from
discovering a new symptom), and so on.

Orca was the second schema-based reasoner. Its primary domain is intelligent mission-level control
of autonomous underwater vehicles (AUVs) and other real-world agents. It has existed in several
versions through the years, beginning with one in which all aspects of the reasoner were intertwined, if
somewhat modularized, to the current (in progress) version, which is more of an agent-based system
with ConMan as one of the agents.

Orca uses procedural schemas to achieve its goals. However, context-mediated behavior permeates
all of its behavior and decision-making, including how it understands it world, handles unanticipated
events, focuses its attention, and takes actions to achieve its goals.

Figure 3 shows the form of Orca’s c-schemas. Prescriptive knowledge in Orca’s c-schemas consists
basically of four things. First is a kind of knowledge called standing orders. Part of this consists of
behavioral parameter settings that not so much initiate behavior as modulate it. For example, when
entering a harbor, the corresponding c-schema’s standing orders may suggest tightening the AUV’s
depth envelope to keep it away from surface traffic and clutter on the bottom. Standing orders can also
specify actions or goals to take when entering a context. For example, when Orca realizes it is in the
context “low power”, the corresponding c-schema’s standing orders may activate the goal to return to
base.

In recent work [51, 52], we have begun to examine adding “clean-up” actions and goals to the
standing orders that should be taken when leaving a context represented by a c-schema. For example, if
someone is in the context “cooking” and decides to leave the house, clean-up actions of the “cooking”
c-schema should cause the person to turn off the stove.”

’We are not proposing this as a cognitive model of human behavior. The cited work focuses on modeling a
cognitively-challenged individual for testing assistive technology and to incorporate into games and simulations.
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Figure 3. Structure of a contexual schema for a reactive planner (e.g., Orca)

A second important kind of knowledge in Orca’s c-schemas is goal-related. A real-world agent may
have many different goals: recharge batteries, rescue a human, take data samples, determine the current
location, and so on. Which one(s) to work on at any given time and their priority is context-dependent.
For example, during a rescue mission, taking data samples and recharging batteries are of secondary
importance to the actual rescue-related goals.

Goals whose treatment differs from usual in the context are described in the context’s c-schema. A
goal can be automatically activated (i.e., as part of the standing orders) or deactivated for the duration
of the context. Goal importance can also be specified, either as an absolute (fuzzy) importance (e.g.,
“very high”) or relative to another goal (“more important than”). Thus goal-related knowledge focuses
Orca’s attention on the appropriate thing to work on, given the context, by telling it which goals should
be pursued and the order of their importance.

A third kind of prescriptive knowledge helps the agent determine how to achieve its goals. For a
schema-based reasoner such as Orca, this consists of descriptions of procedural schemas that are
appropriate in the context. These can be linked to goals described in the c-schema, or they can just be
available for when other goals arise. Although any p-schema Orca knows about can be found by
searching its memory, some are listed in c-schemas for two reasons. First, a p-schema that can achieve
a particular goal can serve as a starting point to search for the best way to achieve that goal, thus
focusing the agent’s attention on a part of memory and short-cutting perhaps a good deal of search.
Second, and more important, listing a p-schema in a c-schema embodies the knowledge that the it (or
one of its specializations) is the appropriate way to achieve the associated goal in the context.

A fourth type of Orca’s prescriptive knowledge is about how to handle unanticipated events. For a
real-world agent, surprises are a way of life: equipment fails, other agents do unexpected things,
sensors give bad data. Elsewhere,’ we have labeled this as being caused by CRUD: Complex missions
and domains; Real physical systems; Uncertainty; and a Dynamic world. Consequently, there will be
unanticipated events that occur during such an agent’s mission that must be handled or the agent risks
its mission and itself.

*In a talk (“Intelligent mission planning and control of autonomous underwater vehicles”) given by the author at the
ICAPS Workshop on Planning Under Uncertainty for Autonomous Systems, 2005.
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Orca’s c-schemas provide context-specific knowledge about unanticipated events.® One part of this
1s knowledge allowing the agent to realize that an event has occurred. For example, if an AUV
consistently is late arriving at waypoints, there may be a systemic problem, such as a loss of power or a
severe current, that needs to be attended to. C-schemas can provide context-specific hypotheses about
events that may have happened. For example, in a hostile area, detecting a sonar ping would be
unexpected and potentially dangerous, since it could signal an enemy hunting for the AUV.

A second kind of knowledge has to do with diagnosing the event once it is noticed. For example, if
an AUV stops its forward motion, it could be because of the loss of a propeller, loss of a thruster
motor, being stuck in seaweed, caught in a current, etc. A c-schema can provide context-specific
diagnostic information. In the example above, a c-schema representing being in a hostile area should
provide diagnostic information that suggesting that the agent consider the hypotheses of an enemy
hunting the AUV, an enemy operating sonar but unaware of the AUV’s presence, and so forth; these
would not be hypotheses considered, for example, upon hearing a sonar ping in the AUV’s home
harbor. In addition, the c-schema should provide context-specific ways of proceeding with diagnosis to
determine the correct hypothesis (e.g., use passive rather than active sonar to identify the potential
enemy, etc.).

Event-handling knowledge also includes information about the meaning of the event in the current
situation. This can be as simple as an importance estimate or as complex as knowledge describing the
likely outcome should the event be ignored. Based on this, the agent can determine whether it should
attempt to handle the event or not.

Finally, event-handling knowledge contains suggestions about how best to handle the event in the
current situation. Depending on the event and context, this could be as direct as specifying an action
for the agent to take (“power failure” — “surface”), less direct, by specifying a specific goal to activate
(“message requesting location” — “determine location and reply”), or very indirect, by specifying a
very general goal (“sonar ping” — “determine source of sonar ping”).

We should stress at this point that all of the information in a c-schema should properly be viewed as
heuristic, or default, knowledge about how to behave in a context. It may be augmented by the agent’s
“default” knowledge about the world, other c-schemas, or the agent reasoning about the world.

5.2. Neural network-based reasoners

Great strides have recently been made in the use of neural networks for a wide range of problems in
Al, in large part due to better hardware (particularly the widespread availability of high-performance
GPUs), new kinds of networks (e.g., convolutional networks), and new and better learning algorithms.
Some years ago, we augmented a simple neural network-based reasoner with context-mediated
behavior [3], and we are currently looking at the problem again with an eye toward making use of the
advances that have occurred in the intervening years.

There are several important benefits to using CMB with a neural network-based agent. The first is
the possibility to have the same agent behave in very different ways in different contexts. This is very
difficult with neural networks, given that they learn broadly based on their training sets and so may
overgeneralize to the extent that their behavior is not as appropriate to a specific kind of situations as
one may like. CMB, however, can give a neural network-based agent the ability to have different,
highly-specific weights and structures for different classes of situations — or even completely different
kinds of neural networks in different situations. For example, in a situation calling for interpreting
images from a camera, a convolutional network could be specified, while in a situation requiring

*We use the term “unanticipated event” here not to mean completely unexpected, but rather in the sense that
someone stepping in front of a car while one is driving is unexpected: it may be known to be possible, but it is not
possible to specify when or even if it will happen in a particular driving situation.
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prediction based on behavior over time, a long short-term memory (LSTM) [18] network might instead
be used.

A second, related benefit is that by partitioning the weights by context, the agent gains the ability to
learn in context, then store those weights upon leaving the context for future use. Only those weights
having to do with the context are changed. Not only that, but training time should be much shorter,
since the network for a particular context is likely to be much simpler than for a network that learns
about all contexts at once.

Contextual Schema (Neural net-based agent)

Descriptive knowledge ]

Prescriptive knowledge
Learning type
& parameters
Topology

Weight matrices

Network structure

Neuron type

[ Schema memory organizational information '

Figure 4. Structure of a contexual schema for a neural network-based agent

Figure 4 shows a c-schema for a neural network-based agent. Here, we do not mean an agent that is
governed by a single neural network with a static structure, but instead an agent that is capable of
executing a given neural network based on a description of the network, much as is done when using
such neural network software packages as Keras, TensorFlow, or Theano. ConMan would provide such
an agent with knowledge about context-specific neural networks. In the worst case, a “default” c-
schema would provide the agent with a general-purpose network trained to do whatever the designers
of the agent determine is appropriate when in no known, specific context.

The prescriptive part of a c-schema for this kind of agent needs to provide a specification for a
neural network that is appropriate for the context. One kind of knowledge needed is about the
network’s structure. This includes the type of network (densely connected feedforward network,
recurrent network, convolutional network, etc.) as well as the topology appropriate for the situation
(e.g., how many layers, how many neurons in each).

A second kind of information would be the kind of neuron to use, for example, the transfer function
for a simple neuron (e.g., logistic, ReLu, tanh, etc.) or a more complicated kind of neuron (e.g., an
LSTM node) and its parameters.

A very important kind of knowledge is the set of weight matrices containing the network’s learned
“knowledge”. These, along with information about the topology, etc., can be given to the network
interpreter to implement the neural network in the situation.

A final kind of information that a c-schema can store for neural networks is the learning type and
any learning parameters. For many kinds of agents, this will be rather simple: just backpropagation and
the learning rate. For others, however, it may be much more complex. For example, if an agent uses a
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neuroevolutionary algorithm, such as NEAT [33], then the learning information could include a
population of genomes for the genetic algorithm portion of the agent’s learning algorithm.

5.3. Rule-basedreasoners

Rule-based systems (RBSs) have been and continue to be useful in many areas. They provide a
simple formalism for representing knowledge, and, depending on the direction of reasoning (forward
or backward), they can solve synthesis problems (forward) or analysis problems (backward), or both.
Fuzzy rule-based systems (FRBSs) extend RBSs with rules and concepts making use of fuzzy logic
and fuzzy set membership.

Although we have not incorporated CMB into an agent that is completely based on a fuzzy rule-
based system, we have gained some relevant experience in a project that entailed incorporating fuzzy
rule-based reasoning in Orca’s event-handling module. Much of what we learned there could be carried
over to any effort to add contextual reasoning to a FRBS or RBS.

[ Contextual Schema (FRBS agent)

Descriptive knowledge ]

Prescriptive knowledge

Chaining
(forward backward both)

pN

Conflict resolution
knowledge

Rules

\—‘ Meta-knowledge

Scherna memory organizational information '
r

Figure 5. Structure of a contexual schema for a (fuzzy) rule-based reasoner

Figure 5 shows what a c-schema would like in such a system. Here, we see agent-specific predictive
knowledge to influence this style of reasoning. In particular, the c-schema provides context-specific
rules for the agent to use while in the context represented. This essentially partitions the agent’s
rulebase into context-appropriate packets. Not only does this increase the specificity of the agent’s
rules (and, hence, its behavior), it also increases the agent’s efficiency, since it reduces the size of the
rulebase to be searched. The rules could exist as explicit rules, or they could be stored as a pre-
compiled structure, such as a Rete network [11]. Other useful knowledge could also be provided, such
as knowledge about how to resolve rule conflicts and other “meta-knowledge”, as well as the direction
of chaining to use when applying the rules in a particular context.

5.4. Other reasoning styles

Any agent that operates in multiple different contexts needs a way to tailor its behavior to the
context it is in at any given time. We believe that virtually any reasoning style can benefit from
incorporating or being assisted by context-mediated behavior.

We intend to investigate applying CMB to several other reasoning styles in the future. For example,
a recent project we were involved with dealt with using learning classifier systems (LCSs) [10] to
model agents in fisheries, a coupled human—biological system [53]. Many of the same advantages seen
for rule-based and neural systems are likely to be realized using CMB with LCSs, as well; in this case,
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a c-schema would contain context-specific populations of rules that have been evolved for the context,
learning parameters, etc.

There are other possibilities, too. Bayesian networks could benefit from context-mediated behavior
by utilizing context-specific probability distributions. Constraint satisfaction would benefit from CMB
by, e.g., having c-schemas suggest appropriate heuristics based on the context, where “context” here
would have to do with the features of the CSP being solved (cf. textures in constrained heuristic search
[12]). CMB could benefit state-space search by suggesting heuristics as well as search styles and
strategies given properties of the problem. Adversarial search — game-playing — could benefit from the
same kinds of things as well as by changing behavior based on the context of whom the agent is
playing (e.g., by using static evaluation functions specific to opponents’ playing styles).

5.5. Multiagent systems

In the past few years, we have begun to look at how context-mediated behavior can be extended to
multiagent systems. An agent in a multiagent system (MAS) needs to consider its own local problem-
solving context, but its context also includes the presence of other agents with whom it is interacting.
This extends its range of possible actions (e.g., it can ask others to take on some of its goals), but also
constrains its behavior (e.g., it may have commitments to other agents that must be honored) in
complex ways.

This implies that the descriptive and prescriptive knowledge in an agent’s c-schemas needs to be
extended to include knowledge about other agents with whom it may be interacting. This includes
knowledge of how they are expected to behave, how it can and should communicate with them, and
knowledge of any credibility issues or any authority relationships that may exist.

We have looked at context-mediated behavior in the case of an agent involved in a MAS in some of
our projects. An early project looked at extending Orca for use in a two-AUV imaging system called
MAVIS [44]. This project added information about communication to Orca to guide an agent in how it
should communicate with its peer.

We have also looked at extending Orca to function as an AUV controller in an autonomous
oceanographic sampling network (AOSN) [7] comprised of many AUVs and other instrument plat-
forms of varying levels of intelligence. The CoDA (Cooperative Distributed AOSN controller) project
[47] focuses on organizing and reorganizing AOSNs as the situation changes. Part of the project
involves using various organization protocols to self-organize a set of instrument platforms based on
the situation and, when the situation changes, to reorganize appropriately. Although this does not
necessarily require context-sensitive reasoning, it can benefit from it.

A recent project looked at making context-sensitive trust decisions in a multiagent setting [48, 49].
Here, contextual schemas were used to recognize the context in a competitive multiagent system in
which there could be untrustworthy (“miscreant’) agents, then used contextual knowledge to choose
the best strategy (where “strategy’ here means a mapping from situations to actions).

An entire MAS, no less than a single agent, must behave appropriately for its context. Its
organization, the assignment of agents to roles, how agents communicate with each other, how it
responds to unanticipated events — all of these are context-sensitive, where the context is the entire
system’s rather than any particular agent’s.
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Figure 6. Structure of a contextual schema for an agent participating in a multiagent system.
Note that it would also include prescriptive knowledge pertinent to the reasoning style of the agent for local
control.

In the CoDA project, we have also examined agents can recognize, based on the context, which
kinds of organizations should be used in a situation. Figure 6 shows what a c-schema used for this
would look like. The prescriptive knowledge in this case still contains information about the actions
the agent should take to achieve its own goals, how to handle unanticipated events, and so forth. But
now that is only a subset of the prescriptive knowledge encoded in a c-schema.

One important kind of contextual knowledge here is information about the appropriate orga-
nizational structure for the situation [45]. This includes the suggested type of organization (e.g., a
hierarchy, a bidding system, a team, etc.), as well as parameters for the organization that are specific to
the context, for example, the number of layers in a hierarchy, the roles and authority relationships, etc.

Knowledge about communication would also be provided by c-schemas. Here, the knowledge
includes such things as the agent language to use, whom to talk to, when or under what conditions to
communicate, any restrictions on communication (e.g., “radio silence” in hostile situations), the kinds
of things to communicate, and any characteristics of communication channels that may impact
communication (e.g., the very low bandwidth of underwater acoustic communication channels).

Finally the protocols the agent uses to participate in the MAS are also context-dependent and should
be provided by the agent’s c-schemas.

Going beyond this work, we have very recently begun to look at distributing the process of context
assessment and contextual reasoning in general across the agents in a MAS [45, 30]. This is in addition
to the agents’ own context-mediated behavior, but it follows a similar process. Agents communicate
about the context explicitly and share information about the context that they may have that other
agents may not. For example, during context assessment, each agent may be reminded of contexts they
each know about, and they share this information with each other prior to the (distributed) differential
diagnostic process.

© 2017 ISTE OpenScience — Published by ISTE Ltd. London, UK — openscience.fr Page | 18



*® Context

* @ Action

g

* O DefaultvaluePar
tition
S
\ e, R
. RS
Y@ selistate N ContextDependen | CantextDependentSemantics
=] tSemantics URL: http:/ /mainesail.umcs.maine.edu/context.owl#ContextDependd
N > Superclasses:
\ ContextDependentSemantics SubClassOf DescriptiveContextualKn
Event \ i :
\ AttentionFocusi Equivalent classes; ) )
e = naknowledge ] ContextDependentSemantics EquivalentTo hasFuzzyFeature some
— = N P . — {AbstractThing
W \Vis__ ~o - and (hasFuzzyMembershipFunction some FuzzyMembershipFuncti
ing DN, - > A .
- ) . ) '-\1 D!:”:Eli"ecl":l L;‘—/ PredictedContex rdfs:label "ContextDependentSemantics"sAxsd:string
-~ n o extualknowledge | Mo
+ " e ContextualKnowl [/ SN S
AbstractThing edge . v N il
~f -
T - | StandingOrders

UL ~ EventHandlingKn
* O ContextlifeCycl |™"7~ . owledge
N
N
ProceduralKnowl
edge

Figure 7. Portion of an ontology for contexts and contextual knowledge.

This work is still in progress and at an early stage. However, one useful outcome already has been
an ontology for contextual knowledge (see Figure 7), represented in description logic, that can help
facilitate and formalize distributed contextual reasoning [30]. In addition, mechanisms have been
developed to allow agents to exchange information about even idiosyncratic contextual schemas
without sending the entire schemas by making reference to their shared contextual knowledge [30] (cf.
work on low-bandwidth communication by E. Turner [35] that shares some properties).

5.6. Acquiring and learning c-schemas

Work on CMB has been focused mostly on establishing how to represent and use contexts and
contextual knowledge, with less attention being paid to acquiring and learning c-schemas. We believe
that acquiring knowledge from humans will be facilitated by our approach, however. Humans seem to
think in terms of contexts and cases, with such statements as “the last time I saw something like this”
and “usually in cases like this” being common in, for example, medical problem solving.
Consequently, it stands to reason that it will be easier to gather knowledge from humans when they can
organize their thoughts around the contexts in which that knowledge is important. Thus, one could start
by asking an expert to think about and list the kinds of situations that are important in his or her field of
expertise; these would become c-schemas. Then, one could use those c-schemas to organize the
acquisition of knowledge about how an artificial agent should behave in the corresponding contexts.

Although knowledge acquisition from humans is a first step, it is not the whole solution to acquiring
an agent’s contextual knowledge. The agent needs to learn c-schemas for new contexts and tailor its
existing c-schemas and their contextual knowledge based on its own experience.

Our work has generally relied on a memory for c-schemas based on a kind of dynamic, conceptual
memory common in early case-based reasoners [19, 23]. This kind of memory addresses the learning
problem by incorporating similarity-based learning, a form of inductive learning.
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Figure 8. A portion of a dynamic memory for c-schemas.

A dynamic memory essentially organizes cases and schemas in multiple discrimination networks.
Each schema is associated with a set of indices that link it to other, more specific schemas. Each index
has two parts: the feature or features it relates to in the parent schema, and a value for that feature that
occurs in the schema being indexed, which differs from the parent’s value. For example, in Figure 8§,
the triangles represent the feature being indexed and the labeled arcs represent the values, so the c-
schema representing operating in Portsmouth harbor can be found from the c-schema representing “in a
harbor” by following the index “nearby city/Portsmouth”, and the c-schema for “in a harbor with
strong currents” can be found by following the index “current strength/strong” from one representing
“in a harbor with strong currents”.

The organization of a dynamic memory is idiosyncratic, since the memory itself learns the
organization as cases or schemas are stored. When something is stored, the indices of the top-level c-
schema are traversed using values of features in the new thing compared to the existing c-schema.
Matching feature/value pairs lead to c-schemas or cases. If a c-schema, then the new thing is indexed
under it in a recursive manner. If a case, then if the new thing is a schema, the case is replaced and the
case is indexed under it; if the new thing is a case, then a collision has occurred, and similarity-based
generalization occurs to create a new c-schema, which is then indexed there, with the cases indexed
under it. If, however, no feature/value pair exists for an important feature when the new thing is being
stored under a c-schema, then such a pair is created as a new index, and the thing is indexed there.’
Thus as new episodes of problem solving (i.e., cases) are stored, new c-schemas may be created
automatically by the memory.

>The process is much more complex than this, including index elaboration, generalizing indices as much as possible, setting
thresholds numbers of cases involved in a collision before c-schema creation occurs, etc. For details, see [19] or [39]. In addition, we
have augmented the basic dynamic memory to provide evoking strengths for the c-schemas found [23], which are then used during
context assessment.
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Recently, we have begun to look at augmenting this memory-based learning mechanism with more
robust machine learning. For example, in the near future, we will be examining how neural network-
based learning can be used both to create new c-schemas as well as to maintain the organization of the
c-schema memory.

6. Current and future directions

In this section, we look briefly at the current work going on in our lab on context-mediated behavior
and at future directions that are planned.

Completing an agent-agnostic context manager. We are currently working on creating a version
of ConMan that can work with most agent reasoning styles with little or no modification. This problem
requires understanding what parts of the context assessment problem are agent-independent and also
determining how to effectively integrate agent-specific knowledge with the agent-independent portions
of c-schemas. The result will be a context manager that can be with any agent.

Applying CMB to other Kkinds of agents. Related to the previous work, we are actively considering
how to apply CMB to agents with reasoning styles that differ from schema-based reasoners. Of
particular near-term interest is how to best apply CMB to neural networks, especially deep learning
networks, to enhance them with context-sensitive behavior, as we discussed above. We will be looking
at how to represent networks in c-schemas, not only for simple feedforward deep networks, but also for
recurrent networks, convolutional networks, long short-term memory-based networks, etc. We are also
very interested in applying CMB to neuroevolutionary approaches such as NEAT, so that network
topologies as well as weights can be learned in a context-dependent manner. We also intend to look at
applying CMB to learning classifier systems to enhance their ability to reason effectively in a wide
range of contexts.

Continuing to formalize the knowledge representation for contextual knowledge. As
mentioned, some work has been done on creating an ontology for the contextual knowledge contained
in c-schemas, with the knowledge being represented in a description logic. Much work remains to be
done, however, including incorporating the DL-based representation into ConMan and application c-
schemas, as well as choosing and/or implementing a DL-based reasoner for ConMan’s use.

Context merger. We have done some work on context merger, e.g., for numeric features and for
features than can be generalized using an isa hierarchy or more formal ontology. The problem is far
from solved, however. We will continue this work in the future, looking for general ways to merge
different kinds of knowledge. We have the suspicion that the merger process itself is likely context-
dependent, and so this ties into the need to consider “meta-contextual” knowledge discussed below.

MAS/distributed context assessment. Work continues on applying CMB to multiagent systems.
This includes incorporating organizational knowledge into c-schemas for use in system self-
organization and reorganization in the CoDA project. It also includes looking at how to distribute all
parts of the CMB process across multiple agents, so that the MAS as a whole reasons about and is
aware of the system-wide context. Although we have a rough roadmap for how to do this, as well as
some work that has laid the foundation, much work remains to be done in the future.

Active vs. reactive CMB. In past work, we can think of CMB as being more reactive than active:
context assessment happens in response to situational change. Recently, one of our students (C.
Wilson) has begun work on a more active approach, in which an agent can reason about future contexts
it can potentially be in as well as take actions to establish a desired context [51, 51, 52]. This has
significant potential benefits for an agent, including helping it determine what to do to retain important
features of the current context and how to cleanly exit a context (e.g., turning off the stove when
transitioning from the “cooking” context to the “getting the mail” context). It also offers the possibility
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for the agent to plan to be in a particular desired context, or not to be in undesired ones, based on
overall properties of the contexts rather than simple goal achievement. This potentially can offer a
solution to the pesky problem of dealing with so-called “preservation goals”, such as maintain health,
etc.: the agent, instead of planning to preserve such a goal, can instead plan to transition only to
contexts in which the goal is still satisfied.

Learning contexts and contextual knowledge. As noted, relatively little has been done on this
issue, though it is very important in the long run. We have begun thinking about ways that modern
machine learning techniques, such as deep learning, can be incorporated into CMB to help it learn new
contexts and to learn about its existing ones. For example, a long short-term memory network could be
used to help detect and learn the consequences of trends in features of a context over time, or a
feedforward network could be used to learn the applicability of a c-schema for a particular situation.
This dovetails with our work on supporting alternate reasoning styles, since the topology and weights
of a network that, say, predicts the usefulness of a c-schema could be stored in the c-schema itself and
itself be subject to learning. Machine learning could also be used in the c-schema memory, both to
augment or replace current similarity-based learning and to learn and maintain the memory’s
organization. We are at a very early stage of this work, but we are excited by the tremendous advances
being made in machine learning currently, and we are optimistic about their usefulness for CMB.

Fielding applications. Most of the work done on CMB has been done in simulation, since we have
been more focused on elucidating the mechanisms and knowledge representation needed than on
applications. However, we anticipate applying CMB in a range of applications, some in the near future.
We have mobile robots in our laboratory that we can field our agents on, and we have begun
discussions with other researchers at our institution about using their instrumented underwater and
surface vehicles, both as testbeds for CMB as well as a means to control these assets while collecting
important oceanographic data. Since there are multiple vehicles, we may also be able to use them to
test our multiagent systems work.

We also intend to continue collaborating with our former student (L. Whitsel) who is interested in
trust and cybersecurity issues. This collaboration is particularly interesting, as his ideas on context
representation and use are somewhat different than “traditional” CMB, and so should be a rich source
of comparisons and discussion.

Fielding real agents, especially in support of other goals, will also allow us to address our goal of
validating the context-mediated behavior approach by gathering data on how it performs in a variety of
domains and applications.

Simulation and modeling applications. A recent project focuses on simulating the behavior of
cognitively-impaired humans using CMB to represent their thought processes, based on the hypothesis
that some inappropriate actions may be the result of errors either in assessing their context or in
applying their contextual knowledge [52]. Although fascinating in its own right, the motivation for this
project is to provide realistic subjects with which to test assistive agents for the cognitively-impaired.
This work also has application to video games, since it could provide a means to implement non-player
characters (NPCs) that behave more realistically in the “fog of war” or when being cognitively
overloaded in general. Applications exist for so-called “serious games” as well, such as those used in
battlefield simulation.

This work also ties into our long-term goal of developing a “cognitive prosthesis” to assist
cognitively-impaired individuals, for example, those suffering from dementia. We anticipate using
context-mediated behavior to control the agent, but we can also make use of this work to allow the
agent to better understand its patient and to predict what he or she may do in a given situation.

Integration with other approaches to context management. CMB is not the only approach to

context-sensitive reasoning, of course, and we would like to investigate not only how our approach
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compares to others, but also how we might combine the best features of ours and others’ approaches.
Two very promising approaches to context-sensitive reasoning in particular are Brézillon’s contextual
graphs (e.g., [4]) and Gonzalez’s CxBR [16]. Some work has been done by those authors to compare
their work [15], and we intend to investigate how our work compares as well. We also will look for
ways to incorporate some of their ideas, where useful, in our work and to point out where parts of
CMB might benefit their work.

Meta-contextual knowledge. As we mentioned early in the paper, the first schema-based reasoner,
MEDIC, not only had contextual and procedural schemas, but also a third type, Strategic schemas.
These had less to do prescribing what to do as how to do it, and they were used in concert with c-
schemas. It has become clear to us over the years that these were really a representation of a kind of
“meta-context”, in particular representing the context of applying contextual information contained in
c-schemas. Although s-schemas were dropped from CMB early on, we plan to investigate whether
bringing them, or something very much like them, back will benefit CMB. We have alluded to one area
in which some meta-knowledge would be beneficial: merging contextual knowledge from different c-
schemas, which we said may itself be context-dependent. We can also see that some c-schemas that we
have considered, such as one representing ““clandestine operation” have much of the character of both
c-schemas and s-schemas, since they represent both particular things to do/not do (e.g., standing orders
for radio/acoustic silence) as well as things that cut across and are orthogonal to other c-schemas (e.g.,
causing an agent to ignore the need for GPS fixes, decreasing the importance of survival goals if
preserving them would risk capture, etc.). We can even envision meta-c-schemas representing such
things as “learning context” or “performance context” that would affect how the agent makes use of
and changes its other knowledge, including c-schemas.

7. Conclusion

In this article, we have attempted to provide the reader with a review of the more important parts of
one approach to modeling and using context, context-mediated behavior. Since work on this has been
done over almost 30 years and reported in 50+ publications, we cannot hope to have reviewed
everything. However, we hope we have given a reasonable overview of the approach and in particular
the way we have addressed the principles set forth in an earlier section.

Although we have done much research on CMB, there remains much to be done, both by us and in
cooperation with our colleagues in the context community. We look forward to many more years of
fruitful research on the intriguing and important problem of how to create an agent that always behaves
appropriately for its context.
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