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ABSTRACT. Specifying the search space is an important step in designing multimedia annotation systems. With the 
large amount of data available from sensors and web services, context-aware approaches for pruning search spaces are 
becoming increasingly common. In these approaches, the search space is limited by the contextual information obtained 
from a fixed set of sources. For example, a system for tagging faces in photos might rely on a static list of candidates 
obtained from the photo owner's Facebook profile. These contextual sources can become extremely large, which leads to 
lower accuracy in the annotation problem. 
We present Context Discovery Algorithm, a technique to progressively discover the most relevant search space from 
a dynamic set of context sources. This allows us to reap the benefits of context, while keeping the size of the search 
space within limits. 
As a concrete application for our approach, we present a simple photo management application, which tags faces of 
people in a user's personal photos. We empirically study the role of our framework in the face tagging application to tag 
photos taken at real-world events, such as conferences, weddings or social gatherings. Our results show that the 
availability of event context, and its dynamic discovery, can produce 97.5% smaller search spaces with at least 93% 
correct tags. 
RÉSUMÉ. Spécifier un espace de recherche représente une étape importante dans la conception de systèmes 
d'annotation multi-média. Avec une grande quantité de données provenant de capteurs et de services Web, les 
approches sensible au contexte deviennent de plus en plus usuelles pour élaguer les espaces de recherche. Dans ces 
approches, l'espace de recherche est limité par les informations contextuelles qui sont obtenues à partir d'un ensemble 
donné de sources. Par exemple, un système pour marquer les visages dans des photos pourrait reposer sur une liste 
statique de candidats obtenus à partir de photos de personnes sur leur profil FaceBook. Ces sources contextuelles 
peuvent devenir très volumineuses, ce qui peut conduire à une précision plus faible dans le problème des annotations.  
Nous présentons un nouvel algorithme de découverte du contexte, une technique pour découvrir progressivement 
l'espace de recherche le plus pertinent pour un ensemble dynamique de sources contextuelles. Ceci nous permet de 
recueillir les bénéfices du contexte tout en gardant la taille de l'espace de recherche à une taille raisonnable. Comme 
concrète application de notre approche, nous présentons une application simple de management de photos, où les 
visages de personnes sont marqués à partir de photos privées d'un utilisateur. Nous étudions empiriquement le rôle de 
notre cadre de travail dans l'application de marquage de visages pour marquer des photos prises lors d'événements 
sociaux comme des conférences, des mariages ou de rassemblements sociaux. Nos résultats montrent que la 
disponibilité du contexte des événements et sa découverte dynamique peut produire des espaces de recherche plus 
petits de 97.5% avec au moins 93% de marquages corrects.  
KEYWORDS. Context-based reasoning, Search Space Pruning. 
MOTS CLÉS. Raisonnement basé sur le contexte, élagage d'un espace de recherche, reconnaissance de visages. 

1. Introduction 

With the popularity of global social networks and proliferation of mobile phones, information about 
people, their social connections and day-to-day activities are becoming available at a very large scale. 
The web provides an open platform for documenting many real world events such as conferences, 
weather events and sports games. With such context sources, multimedia annotation algorithms [15, 
19, 21] are being designed where the search space of tags is obtained from one or more sources (figure 
1.1(b)). These approaches rely on a single type of context. For example, using social network 
information from Facebook to solve the face recognition problem. We refer to such a direct 
dependency between the search space and a data source as static linking. Although these systems are 
meritorious in their own right, they suffer from the following drawbacks: they do not employ multiple 



© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                    Page | 2 

 

sources, and therefore the relations between them. By realizing that these sources are interconnected in 
their own way, we are able to treat the entire source topology as a network. Our intuition in this work is 
to navigate this network to progressively discover the search space for a given media annotation 
problem. Figure 1.1(c) shows how context discovery can provide substantially smaller search spaces 
for a set of images, which contain a large number of correct tags. A small search space with large 
number of true positives provides the ideal ground for an annotation algorithm to exhibit superior 
performance. 

 We present the CueNet framework, which provides access to multiple data sources containing 
event, social, and geographical information through a unified query interface to extract information 
from them. CueNet encapsulates our Context Discovery Algorithm, which utilizes the query interface 
to discover the most relevant search space for a media annotation problem. To facilitate a hands-on 
discussion, we show the use of context discovery in a real world application: face tagging in personal 
photos. As a case study, we will attempt to tag photos taken at conference events, weddings and social 
gatherings (birthday parties, for example) by different users. These photos could contain friends, 
colleagues, relatives or friends-of-friends or newly found acquaintances (who are not yet connected to 
the user through any social network). Real world event photos are particularly interesting because no 
single source can provide all the necessary information. It emphasizes the need to utilize multiple 
sources in a meaningful way. 

 

Figure 1.1. The different approaches in search space construction for a multimedia annotation problem. A 

traditional setup, where the search space is manually specified is shown in (a). Context is used in (b), to 

generate large static search spaces. The CueNet framework in (c) produces small relevant search spaces.  

Here is an example to illustrate CueNet's discovery process. Let's suppose Joe takes a picture with a 
camera that records time and GPS in the photo's EXIF header (figure 1.2). Additionally, Joe has two 
friends. One with whom he interacts on Google+, and the other using Facebook. The framework 
checks if either of them has any interesting event information pertaining to this time and location. We 
find that the friend on Google+ left a calendar entry describing an event (a title, time interval and name 
of the place). The entry also marks Joe as a participant. In order to determine the category of the place, 
the framework uses Yelp.com with the name and GPS location to find whether it is a restaurant, sports 
stadium or an apartment complex. If the location of the event was a sports stadium, it navigates to 
upcoming.com to check what event was occurring here at this time. If a football game or a music 
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concert was taking place at the stadium, we look at Facebook to see if the friend “Likes” the sports 
team or music band. By traversing the different data sources in this fashion, the number of people, who 
could potentially appear in Joe's photograph, was incrementally built up, rather than simply reverting 
to everyone on his social network or people who could be in the area where the photograph was taken. 
We refer to such navigation between different data sources to identify relevant contextual information 
as progressive discovery. The salient feature of CueNet is to be able to progressively discover events, 
and their associated properties, from the different data sources and relate them to the photo capture 
event. We argue that given this structure and relations between the various events, CueNet can make 
assertions about the presence of a person in the photograph. Once candidates have been discovered by 
CueNet, they are passed to the face tagging algorithm ([12], for example), which can perform very well 
as their search space is limited to two candidates. 

Contributions: Real-world search spaces are large and complex (because of their time varying 
relationships). Our contribution in this paper is a technique to discover the search spaces for 
multimedia annotation problems by using contextual information (events and their interrelations) from 
multiple data sources. We claim that this search space is significantly smaller than one obtained by 
static linking approaches, but retains a high number of true positives. We describe our findings when 
these ideas are applied to a personal photo annotation problem. 

 

Figure 1.2. Navigation of various data sources by the discovery algorithm. 

In the following sections, we develop our notion of context, and identify its properties which make 
discoveries like the above possible. We discuss the CueNet framework, its different components, and 
the conditions it creates which allow for progressive discovery. We present a context discovery 
algorithm to use these properties and tag faces in personal photos. Finally, we present an empirical 
evaluation to support our above claims.  

2. Context  

Photo capture is a real world event. If we had a perfect description of the world, a photo annotation 
problem simply becomes associating faces in the photo to the people who are related to the event. For 
example, the people who posed for a photo, or are participating in an event during which the photo was 
taken. Computationally, we can view the real world containing a large number of objects (for example, 
people and places), interacting with each other during events. The context for any entity in the real-
world is the state of all the other entities in it. Effectively, it is the set of relationships which exist 
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between all the objects and events at a point in time. For the photo capture event, all the relationships 
between objects and other events at the time of capture is its context. The important implication of this 
observation is that relationships change with time. Events mutate with time, and objects change 
relationships. What is context at a time for an entity, is completely different from what is context at a 
later time. For a given problem, some of these relationships might be more relevant than others, but in 
this work, is classified as context.  

Unfortunately, a complete description of the world is far from available. But, we have disparate 
sources of information which provide a specific vantage into all the entities. Examples of data sources 
range from mobile phone call logs and email conversations to Facebook messages to a listing of public 
events at upcoming.com. Sources can be classified into Personal Data Sources: include all sources 
which provide details about the particular user whose photo is to be tagged (for example, email and 
Google Calendar); Social Data Sources: such as Facebook, DBLP or LinkedIn which provide 
contextual information about a user's friends and colleagues, or Public Data Sources which provide 
information about public events. 

Social and public data sources are enormous in size, containing information about billions of events 
and entities. Trying to use them directly will lead to scalability problems faced by face recognition and 
verification techniques. But, by using personal data, we can discover which parts of social and public 
sources are more relevant. For example, if a photo was taken at San Francisco, CA (where the user 
lives) his family in China is less relevant. Thus, the role of personal information is twofold. Firstly, it 
provides contextual information regarding the photo. Secondly, it acts as a bridge to connect to social 
and public data sources to discover interesting people connected to the user who might be present in 
the event and therefore, the photo.  

We must note the temporal relevance property of a data source. Given a stream of photos taken 
during a time interval, the source which contributed interesting context for a photo might not be 
equally useful for the one appearing next. This is because sources tend to focus on a specific set of 
event types or relationship types, and the two photos might be captured in different events or contains 
persons with whom the user maintains relations through different sources. For example, two photos 
taken at a conference might contain a user's friends in the first, but with advisers of these friends in the 
next. The friends might interact with the user through a social network, but their advisers might not. By 
using a source like DBLP, the relations between the adviser and friends can be discovered. We say that 
the temporal relevance of these context sources is low. This requirement will play an important role in 
the design of our framework. On the other hand, there are sources which indicate a high temporal 
context. For example, social networks contain photo albums which were created during a birthday 
party which tend to contain the same people over photos. 

It is hard to predefine the structure of context if the relationships between entities change with time. 
Hence, these relationships needs to be discovered for every moment of time. For example, conference 
events always have talks. But it is not possible to prescribe whether some attendees will decide to have 
an adhoc design discussion during the conference. Given the disparate nature of data sources, it is also 
hard to predict precisely which data source will provide relevant context. In the example from section 
1, given a photo from Joe, should we check the conferences data source or the sports data source to 
check what event Joe might be participating in? 

In the following sections, we will look at how the CueNet framework uses the different data sources 
to discover the context for a given photo. 

3. The CueNet Framework  

Figure 3.1 shows the different components of the CueNet framework.  
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Figure 3.1. The Conceptual Architecture of CueNet. 

The Ontological Event Models specify various event and object classes, and the different relations 
between them. These declared types are used to define the Data Sources which provides access to 
different types of contextual data. The Person Verification Tools consist of a a face tagging 
algorithm, trained from a database of annotated photos of people’s faces (for example, [12]). When this 
module is presented with a candidate and the input photograph, it compares the features extracted from 
the candidate's photos and the input photo to determine if the candidate is present in the photo or not. It 
must be noted that our work does propose improvements in the face verification algorithm itself. 
Instead we aim to improve its efficacy by reducing it’s search space by determining the photo’s 
context. In this section, we describe each module, and how the context discovery algorithm utilizes 
them to accomplish its task. 

3.1. Event Model 

Our ontologies extend the E* model [8] to specify relationships between events and entities. 
Specifically, we utilize the relationships “subevent-of”, which specifies event containment. An event 
e1 is a subevent-of of another event e2, if e1 occurs completely within the spatiotemporal bounds of 
e2. Additionally, we utilize the relations “occurs-during” and “occurs-at”, which specify the space 
and time properties of an event. Also, another important relation between entities and events is the 
“participant” property, which allows us to describe which object is participating in which event. It 
must be noted that participants of a subevent are also participants of the parent event. A participation 
relationship between an event and person instance asserts the presence of the person within the 
spatiotemporal region of the event. We argue that the reverse is also true, i.e., if a participant P is 
present in location LP during the time TP and an event E occurs within the spatiotemporal region (LE, 
TE), we say P is a participant of E if the event's spatiotemporal span contained that of the participant. 

    [1] 

The symbols ⊏L and ⊏T indicate spatial and temporal containment [8]. In later sections, we refer to 
the location and time of the event, LE and TE as E.occurs-at and E.occurs-during respectively. 
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3.2. Data Sources 

The ontology makes available a vocabulary of classes and properties. Using this vocabulary, we can 
now declaratively specify the schema of each source. With these schema descriptions, CueNet can 
infer what data source can provide what type of data instances. For example, the framework can 
distinguish between a source which describes conferences and another which is a social network. We 
use a LISP like syntax (as shown in figure 2.2) to allow developers of the system to specify these 
declarations. The example below describes a source containing conference information. 

The source declaration consists of a s-expression, where the source keyword indicates a unique 
name for the source. The :attributes keyword is used to list the attributes of this source. The :relation 
keyword constructs the instances conf, time, loc, attendee which are of conference, time-interval, 
location and person class types respectively, and relates them with relations specified in the ontology. 
Finally, the :mappings are used to map nodes in the relationship graph constructed above to attributes 
of the data source. For example, the first mapping (specified using the map keyword) maps the 
conference's time-interval object (t) to the (time) attribute of the source. 

 

Figure 2.2. Defining a source for conference events. 

3.2. Conditions for Discovery 

CueNet is entirely based on reasoning in the event and object (i.e., person) domain, and the 
relationships between them. These relationships include participation (event-object relation), social 
relations (object-object relation) and subevent relation (event-event). For the sake of simplicity, we 
restrict our discussions to events whose spatiotemporal spans either completely overlap or do not 
intersect at all. We do not consider events which partially overlap. In order to develop the necessary 
conditions for context discovery, we consider the following two axioms: 

Object Existence Axiom: Objects can be present in one place at a time only. The object cannot 
exist outside a spatiotemporal boundary containing it. 

Participation Semantics Axiom: If an object is participating in two events at the same time, then 
one is the subevent of the other.  

Given, the ontology O, we can construct event instance graph GI(VI, EI), whose nodes are instances 
of classes in CO and edges are instances of the properties in PO. The context discovery algorithm relies 
on the notion that given an instance graph, queries to the different sources can be automatically 
constructed. A query is a set of predicates, with one or more unknown variables. For the instance graph 
GI (VI, EI), we construct a query Q(D, U) where D is a set of predicates, and U is a set of unknown 
variables. 
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Query Construction Condition: Given an instance graph GI (VI, EI) and ontology O(CO, PO), a 
query Q(D, U) can be constructed, such that D is a set of predicates which represent a subset of 
relationships specified in GI. In other words, D is a subgraph induced by GI. U is a class, which has a 
relationship r ∈ PO, with a node n ∈ D. Essentially, the ontology must prescribe a relation between 
some node n through the relationship r. In our case, the relation r will be either a participant or 
subevent relation. If the relationship with the instances does not violate any object property assertions 
specified in the ontology, we can create the query Q(D, U). 

Identity Condition: Given an instance graph GI(VI, EI), and a result graph GR(VR, ER) obtained from 
querying a source, we can merge two events only if they are identical. Two nodes vI

i ∈ VI and vR
r ∈ VR 

are identical if they meet the following two conditions (i) Both vI
i and vR

r are of the same class type, 
and (ii) Both vI

i and vR
r have exactly overlapping spatiotemporal spans, indicated by the =L and =T. 

Mathematically, we write: 

    [2] 

Subevent Condition: Given an instance graph GI(VI, EI), and a result graph GR(VR, ER) obtained 
from querying a source, we can construct a subevent edge between two nodes vI

i ∈ VI and vR
r ∈ VR, if 

one is spatiotemporally contained within the other, and has at least one common Endurant (a time-
independent entity (for example, a person) which is in contrast to a perdurant, which is a time 
dependent entity (for example, a conference event)). 

     [3] 

     [4] 

Here vI
i. Endurants is defined as a set {w | ∈ VI ⋀ w.type-of = Endurant}. If equation [4] does not 

hold, we simply say that vI
i and vR

r co-occur. 

Merging Event Graphs: Given the above conditions, we can now describe an important building 
block for the context discovery algorithm: the steps needed to merge two event graphs. An example for 
this is shown in figure 3.3(b-d). Given the event graph consisting of the photo capture event on the left 
of (b) and a meeting event m and conference event c, containing their respective participants. In this 
example, the meeting event graph, m is semantically equivalent to the original graph. But the 
conference event, c is telling that the person AG is also participating in a conference at the time the 
photo was taken. The result of merging is shown in (d). An event graph merge consists of two steps. 
The first is a subevent hierarchy join, and the second is a prune-up step.  

Given an original graph, Om, and a new graph Nm, the join function works as follows: All nodes in 
Nm are checked against all nodes in Om to find identical counterparts. For entities, the identity is 
verified through an identifier, and for events, equation [2] is used. Because of the object existence and 
participation semantics axioms, all events which contain a common participant are connected to their 
respective super event using the subevent relation (equations 3 and 4 must be satisfied by the events). 
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Also, if two events have no common participant, then they can be still be related with the subevent 
edge, if the event model says it is possible. For example, if in a conference event model, keynotes, 
lunches and banquets are declared as known subevents of an event. Then every keynote event, or 
banquet event to be merged into an event graph is made a subevent of the conference event, if the 
equation 3 holds between the respective events. It must be noted that node AG occurs twice in graph 
(c). In order to correct this, we use the participation semantics axiom. We traverse the final event graph 
from the leaves to the root events, and remove every person node if it appears in a subevent. This is the 
prune-up step. Using these formalisms, we now look at the working of the context discovery 
algorithm. 

 

Figure 3.3. The different stages in an iteration of the context discovery algorithm; (a) shows an example event 

graph describing a photo taken at a meeting. The meeting consists of three participants AG, SR and AS. The 

photo contains SR and AS. (b) shows two events returned from the data sources. One is a meeting event 

which is semantically identical to the input. The other is a conference event with AG. (c) shows the result of 

merging these graphs. (d) The prune-up function removes the duplicate reference to AG. 

3.3. Context Discovery Algorithm 

Algorithm 1 (in figure 3.4) below outlines the discovery algorithm, denoted as the discover 
function. The function is tail recursive, invoking itself until a termination condition is reached (the 
condition here being when at most k tags are obtained for all faces or no new data is obtained from all 
data sources for all generated queries). The input to the algorithm is a photo (with EXIF tags) and an 
associated owner (the user). It must be noted that by seeding the graph with owner information, we 
bias the discovery towards his/her personal information. An event instance graph is created where each 
photo is modeled as a photo capture event. Each event and object is a node in the instance graph. Each 
event is associated with time and space attributes. All relationships are edges in this graph. All EXIF 
tags are literals, related to the photo with data property edges. Figure 3.3 graphically shows the main 
stages in a single iteration of the algorithm. 

The event graph is traversed to produce a queue of event and object nodes, which we shall refer to 
as DQ (discovery queue). The algorithm consists of two primary functions: query and merge. The 
behavior of the query function depends on the type of the node. If the node is an event instance, the 
function consults the ontology to find any known sub-events, and queries data sources to find all these 
subevents, its properties and participants of the input event node. On the other hand, if it is an object 
instance, the function issues a query to find all the events it is participating in. 

Results from data source wrappers are returned in the form of event graphs. These event graphs are 
merged into the original event graph by taking the following steps. First, it identifies duplicate events 
using the conditions mentioned above. Second, it identifies subevent hierarchies using the graph merge 
conditions described above, and performs a subevent hierarchy join. Third, the function prune_up 
removes entities from an event when its subevent also lists it as a participant node. Fourth, push_down 
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is the face verification step if the number of entities in the parents of the photo-capture events is small 
(less than T).  

 

Figure 3.4. The Context Discovery Algorithm. 

The push_down step will try to verify if any of the newly discovered objects are present in the 
photo and if they are (if the tagging confidence of this object, obtained from the face verification 
algorithm, is higher than the given threshold), the objects are removed from the super event, and linked 
to the photo capture event as its participant. In other words, they are pushed down the subevent 
hierarchy. Alternatively, if the number of new objects is larger than T, the algorithm initiates the vote-
and-verify method, which ranks all the candidates based on social relationships with people already 
identified in the photo. For example, if a candidate is related to two persons present in the photo 
through some social networks, then its score is 2. Ordering is done by simply sorting the candidate list 
by descending order of score. The face verification runs only on the top ranked k candidates. If there 
are still untagged faces after the termination of the algorithm, we vote over all the remaining people, 
and return the ranked list for each untagged face. 

Figure 3.3 shows the various stages in the algorithm graphically. (a) shows an example event graph 
describing a photo taken at a meeting. The meeting consists of three participants AG, SR and AS. The 
photo contains SR and AS. (b) shows two events returned from the data sources. One is a meeting 
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event which is semantically identical to the input. The other is a conference event with AG. (c) shows 
the result of merging these graphs. (d) The prune-up function removes the duplicate reference to AG.  

3.4. Merging Context Networks 

In this section, we look more closely at the merge function. Algorithm 2 (in figure 3.5) presents the 
pseudo-code for merging a secondary context network, S, into a primary context network P. A 
terminology of primary and secondary is to signify that all data instances from a secondary network 
will be merged into a primary network. While merging networks, we also assume that events have at 
most one super-event. Thus, no diamond structures are found in either network. The algorithm below  
shows the steps needed to merge two networks each with a single root. A root event is one which has 
no super-events. The symbol ∀se stands for “for all subevents”. 

 

Figure 3.5. Algorithm to merge two context networks. 

Once the two root nodes, Pr and Sr have been identified, we descend the subevent trees of the two 
context networks, and do one of the following operations. For each subevent of Pr, we check if any 
subevent is equal to Sr, then merge the information from Sr to this subevent, and continue recursively 
merging the children of Sr into the children of the subevent. If a subevent of Pr contains the new 
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instance, Sr, we simply continue recursion. But, if Sr can contain the subevent node, then we add of the 
siblings sub-events which can become subevents of Sr to a list containedSubevents, and add Sr as a 
subevent of Pr, remove all the children from Pr in containedSubevents, and add them as subevents of 
Sr. Recursion is continued on the children of Sr from the newly connected Sr node in the primary 
network. Any new literal properties, spatio-temporal attributes and participant information in events 
which exist in the primary networks are copied using the mergeInformation function (which simply 
copies attributes from one node to the other). 

4. Experiments and Analysis 

In this section, we analyze how CueNet helps tags personal photos taken at different events. For a 
given user, we will construct a dataset consisting of photos taken at a particular event. For each of 
these users, we will create a candidate set by aggregating people over personal, public and social data 
sources. In order to evaluate CueNet, we will attempt to reduce this candidate set, and analyze how 
many of the faces can be correctly tagged by this reduced set. We will also compare this performance 
over techniques like location based ranking, where candidates are ranked according to their last known 
location. Our final conclusion is that, in order to rank candidates for tagging faces in photos, CueNet 
provides an event-agnostic platform, where as other techniques perform inconsistently across different 
types of events. 

4.1. Setup  

We use photos taken during three different types of events: Social Parties, Academic Conferences 
and Trips. This diversity allows for different distributions of face tags across different aspects of a 
user's life. Social Parties generally tend to have close friends who are spatially co-located. Conferences 
tend to have people from different parts of the world, but those who are affiliated with the area of the 
conferences. Trips cannot always rely on location as a useful metric and can involve people from either 
social, personal or professional circles from a user's life. 

For each event type, we collect multiple datasets from 6 different people. A dataset consists of 
multiple photos during the event, the user's personal information, which contains information from 
sources like Google Calendar, personal email and profile information from social networks like 
Facebook and Twitter. We also collect a person's social networking information which consists of 
tweets written by the user or their friend during the time the event was occurring, the social network 
itself (friends on Facebook and Twitter, along with their profile information). Conference proceedings 
are downloaded from DBLP and the conference website. Facebook events are also obtained and stored 
in our database. Besides, location databases like Yahoo Placefinder were used to geocode addresses 
and reverse geocode EXIF GPS coordinates. We assume that all photos have a valid EXIF tag, 
especially the timestamp and GPS coordinates. This assumption is not a very hard one, as almost all 
photos captured in the last two years are through iPhone or Android smartphones, which add 
reasonably accurate GPS tags and accurate timestamps (where the phone clock is synced with the cell 
tower). The ground truth was annotated by the user with our annotation interface. For each photo, an 
annotation consisted of the ID of the person in the candidate set in it. Face verification was achieved 
initially with Face.com, but after their service was discontinued, we used the web service, Automatic 
Face Systems, maintained by Neeraj Kumar (of University of Washington), based on the work 
described in [12].  

We use 1889 photos taken at 17 different events in our face tagging experiment. Each photo 
contains one or more faces. We will denote each dataset as `Di' (where 1 ≤ i ≤ 17 for each dataset). 
Table 3.1 describes each dataset in terms of number of photos, unique annotations in ground truth, the 
year they were captured and the type of the event. The total number of people who could have been 
present in the picture is 1894 (i.e., the total search space). The ground truth here means a list of labels 
created by the owner of the photo album labeling the faces in the photos. 
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Figure 4.1 shows the distribution of the ground truth annotations of the conference datasets across 
various sources, for each dataset. For example, the bar corresponding to D2 says that 87.5% of ground 
truth annotations were found in event sources, 41.67% in social networks, 4.17% in personal 
information and 12.5% were not found in any source, and therefore marked as “Out of Context 
Network”. From this graph it is clear that event sources contain a large portion of ground truth 
annotations. Besides D4, a minimum of 70% of our annotations are found in event sources for all 
datasets, and for some datasets (D3, D7) all annotations are found in event sources. The sum total of 
contributions will add up to values more than 100% because they share some annotations among each 
other. For example, a friend on Facebook might show up at a conference to give the keynote talk. 

First, we look at how CueNet reduces the number of possible candidates for all photos in a dataset. 
For this setup, the complete search space, contains 1894 labels (total number of people present at the 
conference, user's emails and social graph). The figure 4.2 shows various statistics for each photo in 
dataset D2, which includes the maximum size of the list which was generated by the discovery 
algorithm, the actual number of people in the photos, the number of true positives and false positives. 
As it can be seen, the size of the discovered set S, never exceeded 12. This is 0.5% of the original 
candidate list. Because the total number of possible participants (list size) was low, our False Positive 
rate (FP) were very low too. Most of the false positives were due to profile orientation of faces or 
obstructions (this was because the face detector was smart enough to pick up profile faces, but 
verification worked better only on frontal faces). 

Dataset  Unique 

People 

No. of 

Photos 
Year 

Event Type 

D1 23 78 2012 Conference 

D2 44 108 2012 Conference 

D3 6 16 2010 Conference 

D4 7 10 2010 Conference 

D5 36 80 2009 Conference 

D6 18 63 2013 Conference 

D7 7 11 2013 Conference 

D8 12 25 2009 Conference 

D9 14 65 2011 Party 

D10 13 131 2010 Party 

D11 6 85 2008 Party 

D12 50 74 2012 Party 

D13 19 330 2009 Party 

D14 14 363 2009 Trip 

D15 2 208 2010 Trip 

D16 4 217 2011 Trip 

D17 7 23 2011 Trip 

Table 4.1. Profile of datasets used in the experiments 

Alternatively, the numbers below can be interpreted as tagging the event itself, and not individual 
photos. We do this modification to reduce the number of graphs drawn per experiment. We define a hit 
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as a correctly tagged face. Figure 4.3 shows the hits for datasets using the context discovery algorithm. 
The blue bars show the number of unique faces in the dataset. As we can see the number of hits is 
comparable to the number of unique faces, which implies that our context discovery algorithm was 
able to find the correct face tags for almost all datasets. 

 

Figure 4.1. The distribution of annotations in the ground truth for conference photos across various sources. 

 

 

Figure 4.2. The number of candidates in the context network of photos in dataset D2. 
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Figure 4.3. The number of unique faces and hit counts as found by the discovery algorithm for all datasets. 

Most of the datasets contain hundreds of candidates. If we have to perform face verification on all 
datasets, then the discovery algorithm is not performing effectively. The fewer the number of 
verifications, the better the pruning power of the algorithm. In order to quantify this, we introduce the 
metric Verification Ratio, which is simply the number of verifications done per candidate in the 
Candidate Set. If this number is equal to 100%, that means we have performed a very large number of 
verifications (once per every candidate in the search space, which means no candidates were pruned). 
The closer it is to 0, the fewer the number of verifications that were done. This ratio also enables us to 
compare the differences across dataset, where the number of candidates varies. As it can be seen in 
figure 3.4 the verification ratio never exceeds 18.3%. 

 

Figure 4.4. Verification ratio (%) obtained using the context discovery algorithm. 
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For a context discovery algorithm to be effective, it must demonstrate hit counts as high as possible 
(up the number of unique faces) at the same time maintaing low verification ratios. 

In order to compare these results, we perform a tagging experiment using location information 
alone. Candidates are ordered according to their last known location, and presented to the user in the 
same style as the information presented with the context discovery algorithm. In this case, it must be 
noted that some users do not have location information related to them, and are excluded from the 
candidate set. The effect of this fact is seen in the reduced hit count seen using location information. 

 

 

Figure 4.5. Hit counts for all datasets using location only. 

Figure 4.5 shows the hit counts when using location information only. The number of hits is far 
lower than the number of unique faces in each dataset. In some cases, there is absolutely no location 
data at all for any of the candidates. This shows the relative weakness of relying on a single type of 
information. 

Similarly, we measure the verification ratio using location only. We see an adverse effect in in 
figure 4.6, which shows that the maximum ratio has now increased to almost 29%. 

In figure 4.7, we compare the hits ratio of the context discovery algorithm with the location based 
algorithm. The hit ratio is the number of hits per unique face in a dataset. As it can be seen, the context 
discovery algorithm outperforms the simple location based ranking algorithm. The more important 
insight in this graph is that the context discovery algorithm performs consistently across different types 
of events, whereas the location based metric is good only for the party events. This was because in 
such social gatherings, participants lived closed to the location of the event. And therefore, ranked very 
highly when only location was used as context. Figure 4.8 compares the different verification ratios. 
The relatively lower numbers for the context discovery algorithm indicate its superiority over the 
location based algorithm. Again, the important thing is to note its superior performance across event 
types.  
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Figure 4.6. Verification ratio (%) for all datasets obtained using location only. 

4.2. Importance of Individual Sources  

So far, we have used different sources, without evaluating their individual contributions to the 
discovery process. In order to empirically study this, we will perform the tagging experiments without 
each one of the sources. And for each such run of the algorithm, tabulate the hit counts. This will give 
us an insight into the contribution of each source. Figure 4.9 plots the hit counts for two conference 
datasets(D2, D8), two party (D9, D12) and two trip (D14, D16) datasets from our original collection. 
The hit counts are normalized to 100, to allow for easy comparison. In the graph, the source 
‘Facebook’ collectively refers to event and social network information obtained from the website. The 
source ‘Conference’ refers to the keynotes, sessions, lunch/coffee breaks and talk information obtained 
from conference proceedings. For each dataset, figure 4.7 plots the hit counts when one of the sources 
is absent. 

Figure 4.9 shows that the Twitter source is least important for most datasets. This could be because 
a variety of our users do not use the twitter service during their personal events. Personal events also 
do not have hashtags because of which it becomes hard for correlate which tweets correspond to events 
the user is participating. During the presence of such hashtags, their role becomes more prominent (in 
dataset D2), but not by a large amount. The conference source is most useful to tag photos taken at 
conferences. But shows no contributions otherwise. This is understandable as the source is curated 
exclusively for such events, and therefore shows high value for them. 

The role of Facebook and Email are the most interesting parts of this experiment. The Facebook 
social network and their events repository are extremely valuable in tagging photos. Almost all datasets 
lose a portion of their tags if this source is not considered. Although, it does not affect all datasets, but 
on average, worse damage is caused when photos are tagged without email sources. The average loss 
being 31.013% for emails and 26.2184% for Facebook. This difference was due to the fact that people 
almost always correspond with emails before or after an event. As we will see in the next section, there 
are certain reasons which make Email even more valuable than Facebook for our current application. It 
should be noted that we are computing the hit count at the end of all iterations. It might happen that a 
source provides valuable context in the first iteration, which leads to discovering many tags in the later 
iterations. Although this source itself provided very little context, its utility was very high. 
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Figure 4.7. Comparing hits ratio (%) for all datasets (higher is better). 

 

 

Figure 4.8. Comparing verification ratio (%) for all datasets (lower is better). 
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Figure 4.9. Reduction in hit counts observed as a data source is removed. 

5. Known Issues 

In this section, we list some of the issues encountered in designing and building CueNet. Some of 
these are active areas of research, and whereas others are specific to our framework, and can be 
considered potential areas of research. Our experience with CueNet indicates that the following issues 
should be approached in a holistic manner, i.e., in conjunction with each other. Approaching these 
problems in the “context” of each other reduces the individual complexity of each sub-problem by 
possibly increasing the complexity of the entire framework, but making the problem more tractable. 

Noise in Social Media: The problem of noise filtering in web data is a prominent one, and is being 
addressed by various communities in different ways. These problems get trickier because of the 
different variations in representing tiny details such as representation names of people, addresses of 
places, and time. Anthroponomastics indicates that these differences arise due to cultural, historical and 
environmental issues. Such issues are non-trivial and are beyond the scope of our work. Face tags in 
social media sources like Facebook can also be very noisy. This strictly prohibits directly using this 
data to train verification/recognition models. Also, the average quality of photos is poor, resulting in 
weaker features, which would have otherwise allowed better matching. 

Data collection: is a primary requirement for running the experiements described here. Even though 
the user simply had to sign into their sources from our UI, it was hard to get them to do so, especially 
when we requested them for personal email. Privacy concerns are often brought up during these setup 
discussions with users. Different data sources have different integration methods. For example, email 
uses a text based IMAP/POP3 protocol, whereas Twitter provides a modern REST API to access data. 
The data sources abstract their technicalities behind the data source description as shown above, but 
maintaining a growing list of sources is a non-trivial. 

GPS Accuracy: Although the accuracy of outdoor GPS devices is increasingly over time, its 
accuracy indoors falls short because of certain fundamental problems. Specifically, the signals from the 
satellites attenuate drastically because of multiple walls in the path to the receiver. Also, increased GPS 
sensor activity has led to excessive battery consumption in mobile phones. Techniques are being 
developed to optimize battery usage in such situations. 
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Manual Data Creation: A large amount of contextual information is currently created manually. 
Scaling this process to create events from all parts of society is going to be a challenging one. One 
specific example, is the recorded interval of an event. An event such as a party might exceed the time 
interval specified on Eventbrite or Facebook by more than a few minutes. In this case, the photos, 
which according to the user were taken at the party, are no longer going to be associated with the 
photo. In our current work, we allow for some error margins to associate events to a given photo. At 
the same time, with the Internet of things movement becoming more mainstream, the challenge is to 
scale context discovery to billions of sources. This problem of discovering context from billions of 
sources has been addressed in a different light in the data integration community, and some of its 
lessons can be applied to this problem. 

CPU Efficiency: The personal data (social media, emails, conference events) were downloaded and 
installed locally on a computer before running the discovery algorithm over photos. Looking up data 
during tagging time would make the algorithm very expensive (due to multiple round trips calling web 
APIs or parsing native file formats). The computational complexity arises mainly from merging large 
event graphs. Although in our case, the graphs never got larger than a few nodes. This is because our 
datasets were tailored to a specific person. We did not combine data from different users in our 
experiments. 

The query engine in CueNet is responsible for extracting data from different sources. If a very large 
number of photos are being tagged, our scheme of query generation and merging will prove redundant 
and inefficient. Scaling the context discovery algorithm to many concurrent photo tagging requests 
from different people provides a very rich opportunity to develop interesting heuristics using event 
semantics for the multi-query optimization problem. Also, partitioning the discovery algorithm such 
that the computations can occur in a distributed manner is a complex problem. Such steps will be 
required if the application workload is of the scales of Facebook or processing photos in real time at 
the scales of Instagram. 

Face Verification: Even though face recognition has been studied in research for the last two 
decades, face verification, and its specific application to faces in the wild has been a relatively recent 
venture. Although the accuracy of these systems is commendable, the problems of verification in 
photos with occlusion, poor image quality, and diverse lighting conditions exist. These hard problems 
need to be solved before “perfect” or “near-perfect” verification can be established. 

Execution Patterns: When is a good time to execute the algorithm? When a user takes a photo? Or 
before she uploads it to her favorite photo sharing site? Or should we reevaluate the tags on a photo if a 
user updates her social network. For the current evaluation, contextual sources are assumed to be 
immutable. This is not true in the real world. Contextual sources are constantly being appended with 
new information, and old information is being updated. These updates may be vital in tagging a certain 
photo. So the question of when to execute the algorithm or when to query the sources is an unanswered 
one. If a large number of photos are to be tagged, and a busy source like Facebook is being used for 
context, the CueNet query engine must take into account various freshness metrics and crawling 
policies of the sources. 

Open Datasets: The unavailability of a large public data set over which different techniques can be 
evaluated against each other is an open problem. As seen in our experiments, personal information is 
vital to contextual approaches, and this data is largely personal, and therefore cannot be shared openly. 
Optimal anonymization techniques need to be invented such that the privacy of the experiment 
participants are maintained, and at the same time the data is meaningful to be applied in contextual 
approaches to problems. This need to be solved before new context discovery techniques can be 
evaluated independently and against each other. 
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6. Related Work  

The use of context in the sciences has been continuously increasing. It finds applications in various 
fields, starting from its use in holistic thinking to better understand biological and ecological 
phenomenon in [3], to associating the right external data to form coherent stories about economic 
phenomenon [13], to associating plausible connections between history and geography in [6]. The 
advances proposed in these works can be loosely characterized as “utilizing external information” or 
“out-of-the-box thinking”. The reason they are included in this section is because of their common trait 
of relating multiple pieces of external data, to create coherent stories which allows the scientists to gain 
valuable insights into the problem they are solving. 

In Computer Sciences, the Pervasive Computing community and the Human-Computer Interaction 
community have aggregated a wealth of knowledge on context aware applications. Their interpretation 
of the word ‘context’ is mainly inspired from the definition set by Anind Dey [5], i.e. Context is any 
information which describes the situation of an entity. The role of context in mobile computing has 
been studied in [4]. It shows the growing importance of contextual thinking in reasoning about 
networking problems in the mobile computing era.  

More recently, information retrieval communities are showing interest in context based 
representation of data and context-based techniques. One of the most important works in information 
retrieval is the PageRank algorithm [15] developed by Google co-founders Larry Page and Sergey Brin 
in 1996. In this work, Page and Brin define context as the links between different web pages, and the 
anchor text of these links, and argued that this context is more descriptive of a page than the contents 
of the page itself. PageRank was derived by combining this insight with Jon Kleinberg's HITS [11] 
algorithm. 

There are many definitions of the word context in academic works. Notable among them are those 
of Schilit [18], Dey [5], Viera [20], Zimmermann [22] and the work of Patrick Brezillon, a summary of 
which can be found in [13]. One of the problems with the term Context is the overloaded use of it. To 
this effect, Brezillon compiled a list of 150 definitions, and did to this list what lots of scientists do 
with large collections of text -- text analysis using natural language processing techniques, and derived 
the essential components which should make up a holistic definition of context. Their conclusion as 
described in [1] was that context acts like a set of constraints that influence the behavior of a system (a 
user or a computer) embedded in a given task. In spite of this promising “big-data” analysis, many 
questions are unanswered. For example, is context internal or external? Is it a phenomenon or an 
organized network? The most accepted definition of context is the one proposed by Dey: as any 
information that can be used to characterize the situation of an entity. An entity is a person, place or 
object that is considered relevant to the interaction between a user and an application, including the 
user and applications themselves. The information about relations between objects is implicit or 
specified by a designer at design time. In our work, we make this information explicit by taking a 
temporal relation centric view: a notion where context is determined by the relations between entities 
at a particular point in time. Also, in our work, we consider an entity to be an object (which doesn’t 
display time sensitive properties) or an event (which are time sensitive). 

Context is represented using three components: knowledge, external context and proceduralized 
context by [2]. Use of temporal, spatial and social types for a recommendation service has been 
explored in [19]. These ideas are represented using a contextual graph (CxG) representation of 
knowledge and reasoning. Henricksen et al.  [9] also use a graphical notation to represent their context. 
The former approach uses the graph to model the flow of reasoning between different objects within an 
environment, whereas the latter approach uses graph to only represent the various objects and their 
inter-relationships. Their modeling framework allows representation of static and dynamic 
associations, which is very critical in modeling real world relationships. For our work, we rely on 
primitives like the one mentioned in this framework as well as event relations described in [8]. These 
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event semantics (subevent-of and partitcipation relation described in Section 2) provides an additional 
dimension of reasoning than the works described here. These events semantics allow user defined 
ontological models to be plugged into our system to allow it to operate in a variety of real world 
situations. In [16], Reignier et al. present a technique to transform contextual graphs to create concrete 
situation handling implementations using Petri Nets. In [10], Hong et al. present a detailed survey of 
various other context-aware systems. 

7. Summary 

We presented a innovative context based technique to prune complex search spaces for the face 
tagging problem in personal photos taken in the real world. We model context as a time varying 
relationship of objects and events to architect a novel context discovery framework CueNet, and 
designed its discovery algorithms to progressively query various heterogeneous data sources and merge 
context relevant to a given photo. We empirically analyzed the efficacy of context discovery to remove 
a large number of irrelevant candidates.  

There are many challenges which need to be addressed in techniques presented here. For example, 
the application of our techniques to very large scale data sets has been proved difficult due to privacy 
and accessibility issues. It would be interesting to check if the experimental results we have obtained 
would be similar if  ran over millions of users participating in hundreds of types of events. Also, it 
would be very interesting to see how probabilistic event models can be used to automatically learn and 
model events in the real world, and then if these models could provide context for new events. It would 
be very interesting to see how context discovery can be applied to other real world phenomenon such 
as personal health care, weather prediction, financial services, road traffic management or situation 
based advertising. 
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