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ABSTRACT. The exponential growth in the number of papers published annually in the field of machine learning 

applications in energy systems presents a challenge to researchers seeking to conduct comprehensive and effective 

literature reviews. To address this issue, we took a systematic literature review approach with three distinct smaller case 

studies focusing on the application of machine learning in energy systems, namely 1. Machine learning in drilling, 2. 

Machine learning for rooftop solar energy potential quantification, and 3. Machine learning in district heating and cooling 

in the context of seasonal thermal energy storages. In each case, we employed a systematic literature review 

methodology. For topic one, we utilized an existing comprehensive review to generate further insights and information. 

For topics two and three, we used predefined search criteria to conduct relevant publications in a systematic and 

reproducible manner. We investigate the state of the art of the use of machine learning in these distinct areas of inquiry, 

thereby facilitating the identification of research gaps. Ultimately, we compare approaches and models utilized in each 

field, identified common best practices, and propose methods to address potential challenges. The instructions put 

together below fall into four categories. 

RÉSUMÉ. La croissance exponentielle du nombre d'articles publiés annuellement dans le domaine des applications 

d'apprentissage automatique dans les systèmes énergétiques représente un défi pour les chercheurs cherchant à mener 

des revues de littérature exhaustives et efficaces. Pour répondre à cette problématique, nous avons adopté une 

approche systématique de revue de littérature avec trois études de cas distinctes se concentrant sur l'application de 

l'apprentissage automatique dans les systèmes énergétiques, à savoir: 1. L'apprentissage automatique dans le forage, 2. 

L'apprentissage automatique pour la quantification du potentiel énergétique solaire des toits, et 3. L'apprentissage 

automatique dans le chauffage urbain et le refroidissement dans le contexte du stockage saisonnier de l'énergie 

thermique. Dans chaque cas, nous avons utilisé une méthodologie de revue de littérature systématique. Pour le premier 

sujet, nous avons utilisé une revue complète existante pour générer de nouvelles perspectives et des informations 

supplémentaires. Pour les sujets deux et trois, nous avons utilisé des critères de recherche prédéfinis pour mener des 

publications pertinentes de manière systématique et reproductible. Nous étudions l'état de l'art de l'utilisation de 

l'apprentissage automatique dans ces domaines d'investigation distincts, facilitant ainsi l'identification des lacunes en 

recherche. En fin de compte, nous comparons les approches et les modèles utilisés dans chaque domaine, identifions les 

bonnes pratiques communes et proposons des méthodes pour relever les défis potentiels. 

KEYWORDS. Energy systems, Machine Learning, Review, Drilling, ATES, Geothermal, Aerial Imaging, District heating 

and cooling. 
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1. Introduction 

1.1. Machine Learning in Energy systems 

Energy systems are the backbone of modern civilization and are critical to promoting 

environmental, economic, and social sustainability [DON 21]. As energy systems become increasingly 

complex, they require higher reliability demands and offer greater degrees of freedom for practical 

enhancement of integrated multi-energy systems [DUC 20]. Machine learning-based data-driven 

models have emerged as a promising approach for significantly improving the overall usage rate of 

multiple energy sources, especially including renewable energies [SID 20]. Machine learning can 
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capture complicated mechanisms to increase prediction accuracy, make optimal choices based on 

detailed state information, and reduce computational time needed for energy system optimization [PER 

19, TON 22]. In addition, machine learning has been applied to develop advanced energy storage 

devices and systems [GAO 21]. In this review, we explore three impactful applications of machine 

learning in energy systems and the challenges and limitations that must be addressed for further 

progress in this field. 

1.2. Case Study Approach 

We adopt a systematic literature review approach to investigate the state-of-the-art in application of 

machine learning by conducting three distinct case studies. The aim is to provide valuable insights into 

the potential of machine learning to solve complex problems across different fields. In the first case 

study, an analysis of a recent review paper on machine learning in drilling by Li et al. 2022 [LI 22] is 

conducted to provide additional insights. The second case study focuses on the use of machine learning 

in rooftop solar energy quantification, while the third case study examines the use of machine learning 

in district heating and cooling in the context of seasonal thermal energy storages. These case studies 

showcase the application of machine learning in different sectors, such as load demand forecasting, 

design, cost, and control optimization. The specific machine learning techniques used, challenges 

faced, and an outlook in each field are presented. By exploring these case studies, this review paper 

aims to provide a comprehensive understanding of the state-of-the-art in the application of machine 

learning and its potential for solving complex problems in various fields. After introducing the applied 

methodology for each case study and the subsequently chosen selection of papers, we provide in the 

results section for each case study a case study results subsection followed by a short case study 

conclusion and outlook. We conclude with a summarizing conclusion and outlook across the case 

studies. 

2. Methodology 

Organizing and planning literature searches is a complex process that requires careful attention to 

several key categories. These include defining the scope of the literature, conceptualizing the topic, 

conducting a literature analysis, searching for relevant literature, and developing a research agenda. 

Various search processes have been introduced to enhance the quality of literature reviews, such as 

journal and database searches, keyword searches, backward and forward searches, and evaluation of 

the title and abstract of relevant literature [BRO 09]. To ensure effective literature searches, it is also 

recommended to gain a thorough understanding of the subject matter, test and apply a combination of 

search parameters, and use seminal sources to build the backbone of the literature review [BRO 15]. 

Our paper employs the Concept Matrix Method [WEB 02], which is aligned with these guidelines to 

ensure accurate and efficient collection, study, and categorization of the survey. In our case studies, we 

use relevant keywords to conduct literature searches on Google Scholar.  

The first case study focuses on machine learning in drilling, which is an enormously active research 

field. As one can see in Figure 1, the number of papers published per year on machine learning in 

drilling shows an exponential increase. A very recent and comprehensive review of Li et al.2022 [SIR 

21] will here be our base of research, whose content we will analyze further in the following.  
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Figure 1. Number of papers published for per year when searching for “machine learning” + “drilling”  

showing an exponential increase. 

The second case study explored the field of solar rooftop potential quantification by finally 

narrowing down to the search string "machine learning" + "solar energy" + "rooftop" + 

―quantification‖ + ―urban‖ + "aerial image" + "geographic information system" (cf. Figure 1).  

 

Figure 1. Steps involved in the refinement process for the case of solar rooftop potential quantification using 

machine learning 

The systematic literature search was undertaken in Google Scholar. Using the search string 

"machine learning "+ "solar energy "+ ―rooftop yielded 3810 papers. The number of results was then 

reduced by inserting the term "urban" and ―aerial image‖ to the search string to 61, resulting in the 

search string "machine learning"+ "solar energy"+ "rooftop"+ "aerial image"+ "urban". The results 

were narrowed down to 59 by excluding publications published on or before 2012. Adding the term 

"geographic information system" decreased the results to 21 for the search string "machine learning"+ 

"solar energy"+ "rooftop"+ ―quantification‖ + "urban" + "aerial image"+ "geographic information 

system", which then where finally reduced to 12 papers due to accessibility (i.e. not open access) and 

relevance. 

During the systematic refinement process, it was observed that there is also an exponential increase 

in the number of papers published in the research area selected for systematic reviewing for the more 

general search string "machine learning "+ "solar energy "+ ―rooftop" over the years (cf. Figure 2). 
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Figure 2. Number of papers published for per year when searching for "machine learning "+ "solar energy "+ 

“rooftop" showing an exponential increase 

The third case study examined the application of machine learning in district heating and cooling in 

the context of seasonal thermal energy storages. Be employing the search string "machine learning" + 

"district heating and cooling" + "seasonal thermal energy storage" and limiting to articles published 

between 2010 and 2022, we obtained 46 potential articles. Figure 3 displays the number of articles in 

each year from 2010-2022. The 46 papers were aging reduced to 7 papers based on the following 

criteria 1. papers that are not open access (21), 2. paper without machine learning application (11), 3. 

Papers without STES (6), 4. other papers (2), which were not relevant to the study. 

 

Figure 3. Number of papers published for per year when searching for "machine learning" + "district heating 

and cooling" + "seasonal thermal energy storage" showing an increase over the years on average 

3. Results 

3.1. Machine Learning in Drilling 

The application of machine learning or artificial intelligence (AI) has become increasingly prevalent 

in various industries in recent years [SIR 21]. The transition from fossil fuels to renewables to reduce 

greenhouse gas emissions has led to the rise of renewable energy sectors, such as solar and wind 

energy, that provide heat and electricity [UN 23, BMW 23]. While the share of renewable energy in 

Europe was 22.2% in 2021 [EEA 22], this is still insufficient to meet the renewable energy demands 

with respect to a climate neutral energy system in the near future [APP 18]. As a result, new 

technologies are emerging and being developed to support this transition. One sector that requires 

attention and research to make it a mainstream energy source is geothermal energy, as the energy 

generation is marginal in both the European Union (3.2%) and Germany (2.5%), despite its potential 

[MCD20]. The critical aspect of accessing geothermal energy is developing the reservoir using drilling 

techniques, which represent nearly 30% to 50% of the costs for a hydrothermal geothermal project and 

more than half of the total cost on Enhanced Geothermal Systems (EGS) [DUM 13]. However, there 

are also emissions in the drilling process which should be minimized, too [RIZ 22]. The development 

of intelligent drilling and completion technologies using machine learning has shown potential to 

improve the drilling process's efficiency and accuracy [LI 22]. Our study builds upon the 

comprehensive literature review conducted by Li et al. [LI 22] and strives to offer insights into the 

particular domains of drilling where machine learning can be applied, as well as the types of 
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algorithms that can be leveraged for specific tasks to enhance efficiency [LI 22]. Li et al. 2022 [LI 22] 

cite a total of 160 papers, include a number 137 in their analysis over the research fields (cf. Table 1), 

from which we further analyze 124 while excluding papers where machine learning is not used. 

 

Figure 4. Number of used machine learning algorithms in the 124 papers cited in Li et al. 2022 [LI 22] applying 

Machine Learning in Drilling 

3.1.1. Case Study Results 

There are numerous algorithms which have been used in the different papers analyzed by Li et al. 

2022 [LI 22] (cf. Figure 4) but among those only five algorithms are highly utilized in most of the 

fields, which are Artificial Neural Networks (ANN), Random Forests (RF), Support Vector Machine 

(SVM), Particle swarm optimization (PSO) and Genetic algorithms (GA) (cf. Table 1). These five 

commonly used algorithms are defined by us based on the repetition and total usage count not less than 

10 times across the whole research fields in Li et al. 2022 [LI 22]. Overall, ANNs define the by far 

most widely used approach and the usage of ANNs is popular in most fields (cf. Figure 5). 

  

Figure 5. Number of papers per research field in which ANNs were applied in comparison to the total number 

of papers addressing machine learning in Li et al 2022 [LI 22] 
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Table 1. Research fields and number of the five most commonly used algorithms in each of these for the 

analyzed papers from Li et al. [LI 22] 

From Table 1, we get an impression of extensively and non-extensively used algorithms in 

different fields for the five commonly used algorithms.  Li et al. [LI 22] analyzed 15 research fields in 

drilling where machine learning and physical models are used, and from those, whereas 13 fields 

utilized machine learning for various purposes [LI 22]. Next to the five commonly used algorithms 

there are few others which are equally often used in some of the research fields, which we want to 

highlight in the following.  

 

Figure 6. Algorithms used in Prediction of ROP 

 

Figure 7. Algorithms used in Wellbore Flow Behavior 

From Figure 6, we observe that next to the five widely used algorithms, Multi-Layer Perceptrons 

(MLP) are commonly applied to predict the rate of penetration (ROP). Back Propagation Neural 

Networks (BPNN) outnumber the five common algorithms in the field of well bore flow behavior (cf. 

Figure 7). Of course, there are other fields where utilization algorithms next to the five highlighted 

ones is common - in any case, to achieve the desired results, multiple algorithms should be tested, and 

there might be no need to choose an algorithm over another. This analysis gives us an impression on 

how the different research fields of drilling are commonly approached with machine learning 

techniques.  

Depending on the type of process and thus data (dynamic and static) the selection and application of 

machine learning models is adapted also with respect to performance and robustness. In the two 

research fields ―control of the drilling process‖ and ―well trajectory design‖, physical models and 

control systems were used for stability, control efficiency of the well, and as a strategy to control the 

trajectory [LI 22]. There are also few fields where machine learning is partially used or not used at all, 

Algorithms

                                    Research Fields ANN RF SVM PSO GA

Down Hole Environment 4 1 0 0 1

Design and Optimization of Drilling Bit 5 1 0 1 1

Intelligent Prediction of ROP 6 3 3 3 1

Intelligent Optimization of ROP 3 3 0 1 3

Intelligent Design of a well trajectory 0 0 0 1 2

Real time evaluation and optimization of a well trajectory 0 2 0 2 0

Intelligent decision making and control of well trajectory 0 0 0 0 0

Intelligent Characterization of formation properties 3 1 1 0 0

Intelligent Description of wellbore flow behaviour 2 0 1 0 1

Intelligent prediction and diagnosis of drilling risk 6 4 5 1 0

Intelligent control of drilling process 0 0 0 0 0

Intelligent design of hydraulic fracturing 1 1 0 1 1

Intelligent warning and identification of fracturing event 0 1 1 0 0

Productivity prediction and fracturing parameter optimization 1 1 0 0 0

Intelligent completion design and optimization 2 0 1 1 0

Total 33 18 12 11 10
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but instead, physical based models have been used, mostly to control the well trajectory from real time 

steerable systems (RSS) [LI 22]. 

3.1.2. Case study Conclusion and Outlook 

The analysis which has been made shows that ANNs are highly used approach in most of the fields, 

the highest usage of ANNs is in ―Intelligent prediction of ROP‖, ―Intelligent prediction and diagnosis 

of drilling risk‖ followed by ―Design and optimization of drilling bit‖ and ―Downhole environment 

perception‖. There are few research fields where there is no use of ANNs like ―Real time evaluation 

and optimization of a well trajectory‖, ―Intelligent design of a well trajectory‖, ―Intelligent warning 

and identification of fracturing event‖ instead other approaches like RF, SVM, PSO were used. As the 

dominance of ANNs is high one can try implementing them in fields where it has not been used much, 

yet. Furthermore, RF and SVM approaches were used highly only in ―Intelligent prediction and 

diagnosis of drilling risk‖ and ―Intelligent prediction of ROP‖, thus, more studies and implementations 

could be made in other fields. In the research fields ―Intelligent warning and identification of fracturing 

event‖ and ―Productivity prediction and fracturing parameter optimization‖ the total use of machine 

learning is still quite low regarding the total number of papers analyzed by Li et al. 2022 [LI 22], and 

thus maybe provide good research opportunities for the application of machine learning in drilling. 

3.2. Solar Rooftop Potential Quantification 

The utilization of solar energy for heat or electricity generation is a highly promising and 

sustainable alternative to the use of fossil fuels, and the rooftops of buildings represent an underutilized 

resource for solar power generation [SOA 21,MAI 17]. To quantify the potential of rooftop solar 

energy at a large scale, it is necessary to determine the roof area of buildings that can receive solar 

radiation, calculate the total solar radiation obtained within the region based on meteorological 

conditions, and estimate the total solar energy potential with carbon emissions savings and the 

economic recovery period [HUA 19, FAK 21]. However, determining the total roof area can be a 

challenging task, especially for large regions such as cities or countries [HUA 19]. To overcome this 

challenge, machine learning techniques have been developed to identify and quantify the roof area 

using aerial and satellite images [PAR 22, KRA 21, VRI 20]. This involves collecting initial data from 

sources such as Google Earth and Copernicus and using semantic segmentation architectures like U-net 

and Inception-resnet-v2 to identify and segment roofs in the images based on their pixel characteristics 

[SOA 21, PAR 22]. The benefits of utilizing rooftop solar energy are significant, as it enables the local 

production of renewable power and has enormous potential for reducing greenhouse gas emissions 

[MAI 17, CHE 22]. Studies have shown that rooftop solar energy has the potential to meet a significant 

portion of a region's energy demands, such as 22% of Europe's energy demand and 15-45% of the 

energy needs of countries like the United States, Israel, Canada, and Spain [CHE 22]. Furthermore, in 

individual cities like Hong Kong and Seoul, rooftop solar energy has the potential to meet up to 14.2% 

and 30% of energy demand, respectively [CHE 22]. Therefore, there is a clear need to further 

investigate the potential of rooftop solar energy at a large scale using machine learning and other 

innovative techniques. This study seeks to provide a systematic literature review of rooftop solar 

energy measurement based on aerial imaging and machine learning, analyzing various research papers 

published in this field to compare and address the advantages and disadvantages of different 

quantification strategies [SOA 21, PAR 22, KRA 21, VRI 20]. By doing so, we hope to contribute to 

the development of more effective methods for quantifying rooftop solar energy potential, which can 

play a crucial role in the transition from fossil fuels to sustainable energy sources. 

3.2.1. Case Study Results 

All twelve articles obtained from the systematic literature review process in this study used Google 

earth as a source for input data. It was also observed that some studies also utilized open-source 

resources like Copernicus, Open Street Maps (OSM), technical details of PV systems, and aerial 

pictures accessible using Google Maps' static API. However, the article [PAR 22] states that private 
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sources provide high-definition aerial photos for rooftop detection rather than public ones like Google 

earth.  

Semantic segmentation is a major step in the quantification process. It was observed that U-Net is 

used in most of the studies for semantic segmentation. CNN built on the U-Net is employed, because 

of its higher performance on small datasets [FAK 21]. The paper [KRA 21] compared EfficientNet-B3, 

Inception-resnet-v2, and VGG-19, and Inception-resnet-v2 was chosen due to its superior performance. 

For semantic segmentation approaches with traditional supervised learning. The article [CHE 22] 

compared three semantic segmentation frameworks: U-Net, PSPNet, and Deeplabv3+ and U-Net was 

found to be performing better than the others. 

In a study conducted by [VRI 20] Rooftop Photovoltaic potential has been evaluated using a quick-

scan yield prediction technique. It consisted of three primary components. Aerial footage was used to 

rebuild virtual 3D roof segments for each roof, which were then automatically fitted with PV modules 

using a fitting algorithm, followed by the calculation of predicted yearly production. After the results 

were obtained some of the studies had tried to check the accuracy. Twenty randomly chosen roofs were 

chosen by [BOY 19] to compare the model's predictions with estimated real values to assess the 

findings' accuracy. 

Some common challenges in in the application of machine learning for rooftop solar potential 

quantification are: 

3.2.1.1. Failure to identify pre-existing solar panels: 

As observed in most of the papers, when the roof area was calculated, much research failed to 

consider pre-existing solar panels. No differentiation between rooftop space and other surfaces is 

conceivable within building footprints. This can result in incorrect categorization[KOC 22]. When we 

consider a large area with numerous buildings for the study, they can affect the final output. A machine 

learning model which can identify and discriminate solar panel area from the rest is crucial to obtain 

correct results. Apart from solar panels, the machine learning model must be able to distinguish objects 

like water tanks, Chimneys etc. 

3.2.1.2. Limited resolution in the available data: 

Another Challenge faced by semantic segmentation is the least pixel count. Since the least count is 

restricted to a pixel, if the major portion of pixel is dominated by a particular object, the Machine 

Learning model identifies the entire pixel to be that object. Most of the studies though uses public 

sources like Google earth where semantic segmentation can only be done on available images in given 

course resolution. 

3.2.1.3. Failure to identify inclined roofs: 

Since only the top view is taken into consideration, the calculated roof area of an inclined roof will 

be always less than the actual value. This can also have a huge impact on the final output. The machine 

learning model must be taught to consider this factor, while processing the data, as in some research 

like the one carried out by [GER 20]. 

3.2.2. Case Study Conclusion and Outlook 

We have systematically reviewed papers in the field of application of machine learning rooftop solar 

energy quantification and One of the major challenges faced in the quantification process is the 

identification of preexisting solar panels during semantic segmentation. A solution to this was not 

identified in any of the papers reviewed and could subject to future research. 
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3.3. Machine Learning in District Heating and Cooling in the Context of Seasonal Thermal 
Energy Storages (STES in DHC) 

District heating and cooling (DHC) systems are an important part of the energy sector, providing 

sustainable solutions to communities. To improve the efficiency of DHC systems, machine learning 

techniques have been increasingly applied [NTA 22]. To supply energy to DHC systems, a source is 

required, and Seasonal Thermal Energy Storages (STES) can act as an energy source for DHC [BOR 

21]. STES can help to manage the mismatch between the supply and demand of renewable energy 

systems, which may occur over seasonal and inter-annual periods. There are four different types of 

STES: Borehole Thermal Energy Storages (BTES), Aquifer Thermal Energy Storages (ATES), Pit 

Thermal Energy Storages (PTES), and Tank Thermal Energy Storages (TTES) [LYD 22]. Therefore, 

this study focuses on investigating the application of machine learning in DHC networks with STES, 

with load/demand prediction, design, and control optimization as the main research categories [NTA 

22]. This research is motivated by the need to improve the efficiency and reliability of DHC systems 

while reducing their environmental impact. 

3.3.1. Case Study Results 

The algorithms used in the seven articles are Artificial neural networks (ANN), genetic algorithms 

and Non dominant Sorting Genetic Algorithm NGSA-II, which is a multi-objective optimization 

algorithm which is again the extension of an original NGSA develop by Kalyanmoy Deb in 2022 [PER 

20]. Figure 8 gives number of articles used by machine learning methods. 

 

Figure 8. Number of articles with respect to the applied machine learning methods in District Heating and 

cooling in context of Seasonal Thermal Energy Storages 

Various machine learning applications have been applied in different domains, including predictive 

maintenance, energy demand forecasting, control optimization, and anomaly detection. The papers 

addressed in this case study had application of machine learning in energy demand forecasting, control 

optimization, design, and fault detection, specifically in the context of Seasonal Thermal Energy 

Storages (STES), Aquifer Thermal Energy Storages (ATES), and Borehole Thermal Energy Storages 

(BTES). However, studies on other types of thermal energy storages, such as Pit Thermal Energy 

Storages (PTES) and Tank Thermal Energy Storages (TTES), were not present in the papers analyzed 

and thus not considered in this study. presents the distribution of studies across the various machine 

learning application categories. 

Machine learning applications are applied in differrent ways such as preditcitve maintanence, 

energy demand forcasting , control optimization, anomaly detection. Here in the study of the selected 

articles we came accros with the energy demand forecasting, control optimization, design and fault 

detection. Studies undergo with STES and Aquifer Thermal Energy Storages and Borehole Thermal 

Enrgy Storages are peformed here, whereas other thermal energy storages such PTES and TTES 

studies did not show up in the considered papers and are thus neglected. Table 2 shows the three 

different applied machine learning algorithms in the different categories of application. 
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Category ANNs 
G

A 
NSGA-II 

Energy demand forecasting 1   

Control Optimization  2 1 

Design, fault detection 1 1  

Table 2. Applied machine learning algorithms in different categories of application 

Further adressed aspects are: 

– In [HAQ 21], the model predicts the signal of charging and discharging operation and belongs to 

the category of energy demand forecasting. It was validated to be used in other similar projects; both 

charging and discharging models have an average accuracy over 95%. 

– In [SAL 21], optimal based control and model predictive control were applied. MATLAB and a 

genetic algorithm were used to find an estimate of the global minimum, and a local non-linear 

minimization routine was used afterwards to refine the calculation.  

– In [REH 19], TRNSYS system models and a so-called multi-objective building optimizer 

(MOBO) are combined to perform the optimization. For this study, the NSGA-II algorithm is used, 

because it can take care of the constraints, discrete and continuous variables for a multi-objective 

problem [REH 19]. 

– In [PAT 21], the main objective is to development of a modeling environment able to effectively 

compare configurational and design choices for multi-energy systems. The core of the Model Predictive 

Control, that is the optimization function which is Genetic Algorithm, receives information on its 

settings from the MATLAB organization layer. The role of the Genetic Algorithm is to find the optimal 

set of instructions for the generation units of the Test Facility for the next prediction horizon. The 

Genetic Algorithm firstly defines a starting set of instructions following some preset rules. The 

optimizer then communicates the first set of instructions to the MPC-model. 

– In [BUF 21], artificial neural networks and geentic algorithms support the fault detection 

diagnosis. Since the models were trained with laboratory data or data coming from simulations only, 

they do not achieve a sufficient performance when working with online data. On the other hand, these 

kind of Fault Detection Diagnosis (FDD) applications show a very promising growth and may be a good 

option to solve complex FDD problems soon. 

In the papers analyzed there are different tools applied for modeling and for data collection. Among 

these, Transient System Simulation Tool (TRNSYS) seems to be a popular simulation tool within the 

selected papers which can provide simulated data, if no measured data is available. 

3.3.2. Case Study Conclusion and Outlook 

The application of machine learning in the energy sector is of utmost importance in the current 

context. The aim of this study was to provide insights on the use of machine learning in district heating 

and cooling (DHC) systems, specifically with regards to seasonal thermal energy storages (STES). 

Despite some research on STES, a comprehensive investigation on this topic remains limited, although 

Figure 3 depicts an upward trend from 2010 to 2022. The survey highlights the potential field of 

application of machine learning in various areas such as load demand forecasting, design, fault 

detection, and control optimization. Artificial Neural Networks were found to be the most used method 

due to their superior performance over other machine learning algorithms. Additionally, the TRNSYS 

simulation tool was predominantly applied for data simulation. Nevertheless, there is a need for more 

extensive research in the future to better apply machine learning in DHC with STES, including the 

development of innovative approaches to improve the collection and analysis of data. 
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4. Discussion and Outlook 

This review paper has addressed applications of machine learning in three different energy systems. 

In all three case studies, we see a smaller to wider range of machine learning models used for various 

scenarios in developing the technologies, where ANNs are highly utilized machine learning approaches 

in both STES in DHC and Drilling. The ANN approach seems to have a high accuracy where 

prediction is involved as in STES in DHC the energy demand forecast model’s average accuracy is 

over 95%, also in drilling a lot of studies were made using ANNs, e.g. in the prediction of ROP and 

drilling risk. Genetic Algorithms (GA) on the other hand are mostly used in optimization scenarios in 

both drilling and STES in DHC. However, in the case of rooftop solar quantification, U-Net and 

inception resnet - v2 is highly used for semantic segmentation as they have higher performance on 

small datasets compared with others like PSPNet, Deeplabv3+, and VGG-19.  

Some of the possible prospects for development and future research in the considered three case 

studies would:  

– Machine learning in drilling: application of promising machine learning algorithms in fields, 

where they were not applied, yet (cf. e.g., Table 1). 

– Machine learning for rooftop solar energy potential quantification: developing techniques to 

identify pre-existing solar panels and improving various methods to recognize inclined roofs.  

– Machine Learning in district heating and cooling in the context of seasonal thermal energy 

storages: Due to the limited number of studies, there is a good potential for future research on the of 

application of machine learning in load demand forecasting, design, fault detection, and control 

optimization.  

5. Nomenclature 

AI  Artificial Intelligence 

ANN Artificial Neural Network 

ATES Aquifer Thermal Energy Storages 

BHA Bore Hole Assembly 

BPNN Back propagation neural network 

BTES  Borehole Thermal Energy Storages 

DHC District heating and Cooling 

DT Decision tree 

EGS Enhanced Geothermal Systems 

FCNN Fully convolutional neural network 

FL Fuzzy logic 

GA Genetic algorithm 

LSTM Long short-term memory neural network 

LWD Logging While Drilling 

ML Machine Learning 

MLP Multi-layer perceptron 

MWD Measured While Drilling 

PSO Particle swarm optimization 

PTES  Pit Thermal Energy Storages 

RBF Radial basis function 

RF Random Forest 

RSS Real-Time Steerable System 
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STES Seasonal thermal energy storages 

SVM Support Vector Machine 

TTES Tank Thermal Energy Storages 
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