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ABSTRACT. The second fundamental form arising from an oriented minimal immersion of a closed surface in a space
form satisfies several constraints. One of them is provided by the Gauss-Codazzi equation that can be rephrased as
a semilinear problem on the surface. We discuss some results for these type of nonlinear problems and analyze the
behaviors of the solutions when the hyperbolic norm of the second fundamental form is small.
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1 Introduction

In his famous memoirs that settled the foundation of the calculus of variations, Lagrange [23] also
raised the question of finding a surface in R3 that minimizes area among all surfaces that assume a
prescribed values on a given closed curve. For the restricted class of graph surfaces, he derived the
governing nonlinear equation, but aside observing that the plane provides a trivial solution, he did not
investigate further the problem. After realizing that Lagrange nonlinear equation is equivalent to the
vanishing of the mean curvature of a surface, Meunier (1776) discovered two new minimal surfaces in
the Euclid space: the catenoid and the helicoid.

For many years, those have been the only known complete minimal surfaces in the Euclidean space.
A third family were discovered by Scherk [36], and in the middle of the XIXth century the Enneper-
Weierstrass representation formula brought suddenly an infinite family of examples of minimal surfaces.
Since then, there have been impressive progresses, and for a survey in Euclidean space we refer to
[27, 29, 30].

Instead of considering the Euclidean space, there has been extensive studies on the theory of minimal
surfaces in a three dimensional space form, namely in a connected Riemannian 3-manifold of constant
sectional curvature σ, which after scaling of the metric can be chosen as σ ∈ {−1, 0, 1}. The simplest
space forms are the simply connected complete Riemannian manifold Mσ, and by the Killing–Hopf
theorem those one are isometric to one of the three spaces: the Euclidean space R3, the unit “round"
sphere S3 ⊂ R3, or the hyperbolic space H3. By taking the quotient of those spaces by a subgroup
G ⊂ Isom (Mσ) of isometries satisfying:

G acts properly discontinuously on Mσ, (1.1)

G acts freely on Mσ, (1.2)
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one obtains all complete space forms ([48]). Note that for subgroup of isometries the condition (1.1)
is equivalent to request G is a discrete subgroup of Isom (Mσ) ([28, Prop. 1.5.8]). This leads to the
following precise classification of complete space forms (see [48]):

• Complete “Euclidean space forms" of zero curvature. There are, up to conjugacy, only finitely
many subgroups of Isom (R3) that satisfy (1.1) and (1.2). More specifically, the family of co-
compact groups satisfying (1.1), the so-called “crystallographic groups", is finite and only ten of
them act freely on R

3. This list is supplemented by eight non co-compact groups satisfying (1.1)
and (1.2) and we refer to see [48] for more details.

• The complete “spherical space forms", namely spaces of sectional curvature 1, are given as S3/G

with G a finite group of isometries acting freely. Those include the “Lens space" that are obtained
from the action of a finite cyclic group.

• The “complete hyperbolic spaces" of sectional curvature −1 are given by the spaces H3/G, where
G is a subgroup of the group of orientation-preserving isometries of H3 satisfying (1.1) and (1.2)
(the “Kleinian groups").

In R3 or H3, the existence of a closed minimal surface is prevented by the strong maximum principle and
the possibility of foliating these spaces with planes (a trivial family of minimal surfaces). However, such
an obstruction vanishes in other space forms. For instance, by the work of Lawson [24] it is known that,
except the projective space, every closed surface can be minimally immersed into S3, and the oriented
one are in fact embedded. This turns out to be a general fact. Indeed the Almgren’s min-max theory that
originates in [2] has successfully been applied by Pitts [32] to derive general existence results of critical
points for the area functional, and leads in particular to the conclusion that every closed 3-Riemannian
manifold contains a smooth embedded closed minimal surface.

In the light of this abundant class of minimal surfaces, a lot of emphasis has been put on better under-
standing some features arising from a minimal immersions: genus bound, stability, morse index of the
minimal surface · · · , and use them as a constraint to look for a possible classification. Here we follow the
seminal paper by Uhlenbeck [45], who looked at the possible induced metric g and second fundamental
form h that can arise from an oriented minimal immersion of a closed surface in a 3-Riemannian mani-
fold of sectional curvature −1 (not necessarily complete). Such a pair (g, h) of symmetric (0, 2)-tensor
must satisfy, aside the positive definiteness of g, several compatibility conditions:

(i) A first type of conditions show that this pair determines in each small tubular neighborhood the
Riemannian metric of the ambient manifold. In fact the metric is given as the solution to a second
order ODE with initial conditions (g, h).

(ii) Furthermore, by looking at the complex structure on the surface that is associated to the induced
metric g, a second condition is provided by the fact that the second fundamental form must be the
real part of a holomorphic quadratic differential, a strong restriction on the possible set of (0, 2)-
tensors that can arise as second fundamental form of a minimal immersion.

(iii) Finally, a third condition on (g, h) arises from the Gauss equation that reflects the interplay along
the surface between its Gauss curvature and the sectional curvatures of the ambient space.
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Conversely, given a pair (g, h) of (0, 2)-tensors on the orientable surface Σ with g positive definite,
consider the complex structure associated to the conformal class defined by g. Then if h is the real part
of a holomorphic quadratic differential required in (ii), and the pair (g, h) satisfies the Gauss condition
(iii), then the solution to the ODE in (i) defines a metric of constant sectional curvature in Σ × (−ε, ε)

which turns out to be a space form (possibly incomplete) in which Σ× {0} is minimally embedded.

Therefore, by analogy with the Kazdan-Warner problem raised for the class of curvatures functions
[20, 21], we are led to the following question: By fixing a complex structure on Σ, which holomorphic
quadratic differentials are associated to a symmetric (0, 2)-tensor that arise as the second fundamental
form of a minimal immersion of Σ in a space form ?

Henceforth, we discuss this question on a closed orientable surface Σ that is endowed with a fixed
complex structure (a Riemann surface). Denoting by Q(Σ) the set of holomorphic quadratic differential
on Σ, we are interested in the subset Qm(Σ, σ) consisting of those elements that one can get from a
minimal immersion in a 3-manifold of sectional curvature σ. From above discussion the elements h ∈
Qm(Σ, σ) are precisely the quadratic differentials for which the following problem admits a solution:

Prescribed Second Fundamental Form Problem (for minimal surfaces):
Given a closed Riemann surface Σ and h ∈ Q(Σ). Find a metric g on Σ such that

(i) The conformal class [g] is compatible with the complex structure;

(ii) g solves the Gauss equation

Kg = σ − ‖Reh‖2g
2

,

where ‖h‖g stands for the (0, 2)-tensor norm with respect to the metric g.

When σ = −1 this has been studied by Uhlenbeck in [45]. Here we will discuss the general case of
a 3-Riemannian manifold of constant sectional curvature, and will highlight some main differences with
respect to the hyperbolic case.

When the surface is a sphere or torus, their space of holomorphic quadratic differentials are respectively
{0} and a space of dimension one. This property combined with Gauss-Bonnet theorem allow to describe
precisely the set Qm(Σ, σ) in these two cases. For a surface of genus two or higher, the question becomes
more challenging. The above Gauss equation can be rewritten as a nonlinear PDE, whose analysis is
complicated by the presence of zeros for h. Since the uniqueness and existence of solutions is not yet
fully understood, it is crucial to obtain a priori bounds, and understand in which manner the metrics that
are solutions to the “Prescribed Second Fundamental Form Problem" can degenerate.

Denoting by dμg the area element with respect to a metric g, the possible degeneration of a sequence
of metric will naturally lead to investigate the “bending energy" density ‖Reh‖2gdμg, one of the variant
of the Willmore density. Since the metrics under consideration live in the same conformal class [e2ug0]
with g0 the unique hyperbolic metric compatible with the prescribed complex structure, the area element
and bending energy density can respectively be written in terms of g0:

dμg := e2udμg0, ‖Reh‖2g0e−2udμg0.

Thus our study will be reduced to an analytical problem involving only the function u.
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In the case of minimal surfaces in three dimensional flat spaces, we will show the following:

Theorem 1.1. (The case σ = 0) Let Σ be a closed Riemann surface of negative Euler characteristic,
h ∈ Qm(Σ, 0) and n : Σ → Mn a sequence of oriented minimal immersions such that

(i) Mn has zero sectional curvature,

(ii) the induced metric gn belongs to the same conformal class gn = e2ung0 where g0 is hyperbolic,

(iii) the second fundamental form n is given by the real part of h.

If the sequence of induced metric gn degenerate in the sense that min
Σ

e2un → 0, then there is a finite

set B := {p1, · · · , pn} of points in Σ, and non-negative integers (mp)p∈B such that the following weak
convergence of measures holds:

‖Reh‖2gndμgn ⇀ 8π
∑
p∈B

(1 +mp)δp,
∑
p∈B

(1 +m(p)) = genus(Σ)− 1,

and furthermore, Areagn(K) → ∞ for each relatively compact open set K ⊂⊂ Σ \ B.

In fact a more general compactness result could be stated in terms of a sequence hn. Noting first that
a flat metric multiplied by a positive scalar provides again a flat metric, this invariance induces a family
of equivalent minimal immersions. After normalizing

∫
Σ ‖hn‖2gndμgn = 1, one selects a solution within

this class (see Section 5). However, in that generality the set of zeros of hn will change, and some more
works is needed that will be discussed in a future work. The proof of above theorem will be analytic, and
based on a blowup analysis of the solutions of the PDE that transcribes the Gauss equation.

In a hyperbolic space form the situation is quite different. For instance, the Gauss equation combined
with the Gauss-Bonnet Theorem show that the area of a minimal surface |Σ|g with respect to the induced
metric is bounded from above by −2πχ(Σ). Furthermore, Theorem 1.1 is also in contrast with the result
obtained in [17], where we have been led to a more complicated alternative, which in geometrical terms
reads as follows:

Theorem 1.2. (The case σ = −1) Let h ∈ Qm(Σ,−1), and n : Σ → Mn be a sequence of minimal
immersions such that

(i) Mn has sectional curvature σ = −1,

(ii) the induced metric gn belongs to the same conformal class gn = e2ung0 where g0 is hyperbolic,

(iii) the second fundamental form of n is given by the real part of Re (tnh) for some tn ≤ 1.

Under the assumption min
Σ

e2un → 0, then tn → 0 and there are three possibilities:

(a) If ‖Re (tnh)‖2gndμgn is bounded in L∞, we have

tn → 0, Areagn(Σ) → 0

∫
Σ

‖Re (tnh)‖2gndμgn → 8π
(
genus(Σ)− 1

)
, (1.3)

while −2[un − ūn] converges smoothly to a solution of

−Δg0w = 8πn

(
|h|2g0ew∫

Σ |h|2g0ewdμg0

− 1

8πn

)
, n := genus(Σ)− 1; (1.4)
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Whereas, if ‖Re (tnh)‖2gndμgn is unbounded in L∞, then there is a non-empty finite blowup set B :=

{p1, · · · , pn} of distinct points in Σ, and integers (mp)p∈B such that

‖Re (tnh)‖2gndμgn ⇀ 8π
∑
p∈B

(1 +mp)δp,

weakly in the sense of measure, and the following alternative holds:

(b) either Areagn(Σ) → 0, and in such a case

tn → 0,
∑
p∈B

(1 +m(p)) = genus(Σ)− 1, (1.5)

un − ūn
W 1,q

⇀ −4π
∑
p∈B

(1 +mp)G(p, ·), ∀q ∈ (1, 2), (1.6)

where G(p, ·) stands for the Green’s function of average zero of −Δg0 .

(c) or, Areagn(Σ) ≥ C > 0, and in this case

tn → 0, Areagn(Σ) → 4πN > 0,
∑
p∈B

(1 +m(p)) +N = genus(Σ)− 1, (1.7)

whereas un ⇀ u weakly in W 1,q, for q ∈ (1, 2), with u solution of

−Δg0u+ e2u = 1− 4π
∑
p∈B

(1 +mp)δp. (1.8)

In the above result, it is not clear if each of the three alternative can really occur. However, in a work in
progress we have highlighted some classes of immersions in complete 3-hyperbolic manifolds for which
only the alternative (c) can potentially occur.

The plan of the paper is as follows.

In Section 2, we collect some notations and recall some known but important results from Differential
Geometry. Following [45], Section 3 set up the governing equations that a minimal immersion in a space
form must satisfy. Section 4 discusses when a sphere or torus can be realized as minimal surface in a
space form. The case of a higher genus surface in a flat or spherical space form is discussed in Section 5.
The study of minimal immersions in a flat space is undertaken in Section 6, and the last Section 7 is
dedicated to the hyperbolic case.

Acknowledgement. The author thanks Z.C. Han and Z. Huang for very useful discussions on these
topics. This work was mainly written while visiting the Mathematics Department of the University of
Giessen supported by the Project “Vortex dynamics and blow-up phenomena in two dimensions", AH
156/2-1 and BA 1009/19-1. He is very grateful for their support and warm hospitality.

2 Preliminaries and notations

Given a Riemannian 3-manifold (M, 〈·, ·〉) with Levi-Civita connection ∇, our sign convention for the
Riemann curvature tensor evaluated on vector fields X,Y, Z ∈ Γ(TM) will be

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z ,
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and the sectional curvature of two linearly independent vector fields (X,Y )

σ(X,Y ) =
〈R(X,Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2 .

The sectional curvature allows to recover the tensor R, and if M has constant sectional curvature σ the
following formula holds

R(X,Y )Z = σ
(〈Y, Z〉X − 〈X,Z〉Y ). (2.1)

Given a differentiable surface Σ, an immersion : Σ → M induces a Riemannian metric on Σ by
considering the pull back metric still denoted as 〈·, ·〉. Let π : NΣ → Σ be the normal bundle of the
immersion , whose fiber at each p ∈ Σ is given by the orthogonal complement of TpΣ in T(p)M . At each
(p0, 0) ∈ NΣ, the normal exponential map

(p, n) → exp(p)(n(p))

defines a local diffeomorphism from an open neighborhood of (p0, 0) ∈ Σ × R to a neighborhood of
(p0) in M . This induces a system of local charts at each point of (p0) in M , that will be called “Fermi
coordinates". In those charts the metric takes the form

Gij(x, t)dx
i ⊗ dxj + dt⊗ dt, (2.2)

and the Christoffel symbols can be expressed as follows

Γi
33 = 0, Γ3

ij = −1

2
∂3Gij, Γi

j3 =
1

2
Giα∂3Gαj. (2.3)

In particular, in these coordinates we have ∇∂3∂3 = 0.

Given now an oriented immersion f : Σ → M in 3-manifold M , the second fundamental form associ-
ated to a choice of global unit vector field ν on Σ is defined as

h(X,Y ) = 〈∇XY, ν〉, X, Y ∈ Γ(TΣ)

which gives a symmetric (0, 2)-tensor on Σ, namely a section of T ∗Σ⊗T ∗Σ. For a non-orientable surface
Σ, the discussion can be performed on the orientable 2-sheeted cover of Σ. The trace of h with respect
to the metric is called the mean curvature, and the immersion is “minimal" if it has mean curvature zero
at all points. Note that in Fermi coordinates the second fundamental form of the immersion is given by

hij = 〈∇∂i∂j, ∂3〉 = Γ3
ij = −1

2
∂3Gij, i, j ∈ {1, 2}. (2.4)

Let us also recall a major result that goes back to Gauss which concerns the existence of “isothermal
coordinates" on a differentiable surface (see for instance [10]). It allows to select from the differentiable
structure a system of local charts in which the components of the metric are given as gij = e2ϕδij.
Furthermore, in these coordinates the transition map are conformal, and for oriented surfaces those are
orientation preserving conformal maps (namely holomorphic) which provide a complex structure on Σ.
Conversely, given a complex structure on an oriented surface, by “gluing" with a partition of the unity
the family of pull back metrics f ∗geuc with f a local complex chart, one produces a metric, and therefore
a conformal class. Therefore, on an oriented surface there is a one-to-one correspondence between
complex structures (Riemann’s moduli space) and conformal structures.
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Another essential tool that we will need is given by the possibility of finding a canonical metric through
the “uniformization theorem".

Uniformization of metric for compact Riemannian surfaces: Let (Σ, g) be a closed, oriented Rie-
mannian surface. Then, for some u ∈ C∞(Σ) the conformal metric e2ug has a constant Gauss curvature.

When the Euler characteristic χ(Σ) ≤ 0, the case that will mostly be relevant for us, Berger ([6]) found
a variational approach that justifies the “uniformization of the metrics". His method can be summarized
as follows: Finding a metric e2ug of constant curvature σ0 is equivalent to solving the following PDE

−Δgu+Kg

e2u
= σ0 (2.5)

where Kg stands for the Gauss curvature of g, and σ0 = 0 if χ(Σ) = 0 whereas σ0 = −1 if χ(Σ) < 0.

In the case, χ(Σ) = 0 (surface is topologically a torus), we also have
∫
ΣKg = 0 (by Gauss-Bonnet),

and the above PDE reduces to the Poisson problem −Δgw = −Kg, which admits a unique solution of
average zero. In the case χ(Σ) < 0 and σ0 = −1, (2.5) is the Euler-Lagrange equation of

J(u) =
1

2

∫
Σ

{|∇u|2 + e2u}+
∫
Σ

Kgu, u ∈ H1(Σ),

which is smooth and weekly lower semi-continuous by the work of Trudinger ([44]) who derived a fun-
damental inequality, whose optimal form has been given later by Moser in [31] (see also [14]). Further-
more, one can verify that this functional is coercive, strictly convex and consequently admits a minimizer
which is also the unique critical point. Furthermore, similar arguments show that given two conformal
metrics of constant Gauss curvature, then,

(a) if χ(Σ) = 0, the metrics are equal up to a positive scalar multiple;

(b) if χ(Σ) < 0, the metrics are equal.

On the sphere the result holds but is more subtle (see [31]).

3 Governing equations of a minimal immersion

Given an oriented immersion : Σ → M , the curvatures equations (2.1) provide several compatibility
conditions that we will express using Fermi charts (x, x3) with x = (x1, x2) local coordinates on the
surfaceΣ. Writing (2.1) using the coordinate basis vector fields (∂1, ∂2, ∂3) give, as in [45], three types
of constraints on the components of the metric Gij:

(A)
〈
R(∂i, ∂3)∂j, ∂3

〉
= −σGij , i, j ∈ {1, 2},

(B)
〈
R(∂1, ∂2)∂i, ∂3

〉
= 0, i ∈ {1, 2},

(C)
〈
R(∂1, ∂2)∂2, ∂1

〉
= σ

(
G11G22 −G2

12

)
,

and due to the symmetries of the (0, 4)-Riemann tensor Rm(X,Y, Z,W ) := 〈R(X,Y )Z,W 〉, the re-
maining possible relations only lead to trivial identities. The following crucial observation is a conse-
quence of the second Bianchi’s identity:
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Lemma 3.1. Assume Gijdx
i ⊗ dxj + dt ⊗ dt is a metric on Σ × (−t0, t0) fulfilling property (A), and

satisfying (B)–(C) only at t = 0 (i.e. on Σ). Then, (B) and (C) are satisfied on Σ× (−t0, t0).

Now let us write more explicitly the condition (A), and (B)–(C) restricted on Σ.

(A) Due to the symmetry of the Riemannian tensor, we have

(A) ⇐⇒ 〈
R(∂i, ∂3)∂3, ∂j

〉
= σGij

(2.3)⇐⇒ −〈∇∂3∇∂i∂3, ∂3〉 = σGij.

which is equivalent to

−(∂3Γα
i3 + Γβ

i3Γ
α
3β

)
Gαj = σGij (3.1)

The expression in the left hand-side is given by

∂3Γ
α
i3 + Γβ

i3Γ
α
3β =

1

2
∂3[G

αβ∂3Gβi]Gαj +
1

4
[∂3Gβi]G

αβ [∂3Gαj]

=
1

2
∂3
(
Gαβ[∂3Gβi]Gαj

)− 1

2
[∂3Gβi]G

αβ[∂3Gαj ] +
1

4
[∂3Gαi]G

αβ[∂3Gβj]

=
1

2
∂33Gij − 1

4
[∂3Gβi]G

αβ [∂3Gαj]

Therefore, with respect to the variable t := x3, we see that the matrix function G(x, t) := (Gij(x, t)) ∈
M2(R) satisfies the second order ODE

−1

2
∂ttG+

1

4
[∂tG]G−1[∂tG] = σG. (3.2)

Furthermore, the solutions of this ODE are required to be positive definite, and fulfill two initial con-
ditions that result from the fact that G(x, 0) (see (2.2)) coincides with the induced metric g(x) of the
immersion and from(2.4):

G(x, 0) = g(x), ∂3G(x, 0) = −2h(x, 0). (3.3)

As a matter of fact, likewise the case σ = −1 considered in [45], the solution to the Cauchy problem
defined by (3.2) and (3.3) can be written explicitly. Indeed, from any choice of M2(R)-valued functions
A(x), B(x), C(x) with A,B invertible and BC = CB, local solutions to the ODE (3.2) are providing
by:

G(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

A(x)
(
B(x) cosh t+ C(x) sinh t

)2 if σ = −1,

A(B + tC)2 if σ = 0,

A(x)
(
B(x) cos t+ C(x) sin t

)2 if σ = 1.

Hence, the unique (local) solution to (3.2) and (3.3) is explicitly given by:

G(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

g(x)
(
[cosh t]I2 − [sinh t][g−1h](x)

)2 if σ = −1,

g(x)(I2 − t[g−1h](x))2 if σ = 0,

g(x)
(
[cos t]I2 − [sin t][g−1h](x)

)2 if σ = 1,

(3.4)

(note that the negative sign in the three above expression depends on the sign convention in the defini-
tion of second fundamental form). In particular, it follows from (3.4) that in a small neighborhood of

© 2024 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 47



each point of (Σ) the Riemannian structure is uniquely determined by the induced metric and second
fundamental form of the immersion.

(B) The second type of equations are

〈R(∂1, ∂2)∂1, ∂3〉 = 0 〈R(∂1, ∂2)∂2, ∂3〉 = 0, (3.5)

and by Lemma 3.1 we only need to see how they can be satisfied on Σ. An interesting relation for the
coefficients hij of the second fundamental form will come out, if he Fermi coordinates is specialized by
choosing an isothermal system of coordinates on Σ. Indeed the above equations (3.5) are equivalent to{

∂1Γ
3
21 − ∂2Γ

3
11 + Γβ

21Γ
3
1β − Γβ

11Γ
3
2β = 0

∂1Γ
3
22 − ∂2Γ

3
12 + Γβ

22Γ
3
1β − Γβ

12Γ
3
2β = 0

Using (2.4), Γ3
i3 = 0 and writing the remaining Christoffel symbols by using the property that the

components of the induced metric are e2ϕδij , on the surface we get{
∂1h21 − ∂2h11 + ∂2ϕ(h11 + h22) = 0,

∂1h22 − ∂2h12 − ∂1ϕ(h11 + h22) = 0.

Since the surface is minimal, we also have e2ϕ(h11 + h22) = 0, which implies

∂1h11 = −∂2h12 ∂2h11 = ∂1h21

which shows that the complex function h11 − ih12 satisfies the Cauchy-Riemann equations. Hence, by
introducing the complex differential form dz := dx + idy, and considering the complex valued tensor
(h11 − ih12)dz ⊗ dz we deduce that

hijdx
i ⊗ dxj = Real part of (h11 − ih12)dz ⊗ dz, h11 − ih12 holomorphic. (3.6)

Therefore, by looking at the complex structure associated to the metric induced by a minimal immer-
sion on the surface Σ, the second fundamental form must be the real part of what is called a “holomorphic
quadratic differential". This is a strong constraint, and it is worth making some additional comments.

Given a Riemann surface Σ (a surface with a complex structure), denote by T (1,0)(Σ) and T ∗(1,0)(Σ)
the holomorphic tangent bundle and holomorphic cotangent bundle. In local complex coordinates the
elements of those two spaces are respectively spanned by ∂

∂z := 1
2

(
∂x − i∂y

)
and dz : dx + idy. A

“holomorphic quadratic differential" is a holomorphic section of the holomorphic bundle T (1,0)∗(Σ) ⊗
T (1,0)∗(Σ), which henceforth will be denoted by Q(Σ). In a local complex coordinates, each α ∈ Q(Σ)

can be written α(z) = f(z)dz ⊗ dz where f is holomorphic. When Σ is compact, as a corollary of the
Riemann-Roch theorem, the space Q(Σ) is of finite dimension [18], and its complex dimension is given
by

dim Q(Σ) =

⎧⎨
⎩

0 if genus(Σ) = 0,

1 if genus(Σ) = 1,

3
(
genus(Σ)− 1

)
if genus(Σ) ≥ 2.

(3.7)

Furthermore, for genus ≥ 2, each α ∈ Q(Σ) must have a zero. At each point p where α(p) = 0, in a
suitable local system of coordinates we have

α(z) = (z − zp)
γpdz ⊗ dz, (3.8)
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for some γp ∈ N, and setting Z(α) := {p ∈ Σ : α(p) = 0}, the sum of the zeros is a topological
invariant:∑

p∈Z(α)

γp = 4
(
genus(Σ)− 1

)
. (3.9)

A metric g on Σ compatible with the complex structure induces naturally an inner product on each
fiber of the bundle Q(Σ), and we will write |α(z)|g the norm of a quadratic differential with respect to
the metric g.

(C) In order for condition (C) to be satisfied on the surface Σ, the sectional curvatures σ of the space
form and KΣ of Σ (Gaussian curvature) together with the second fundamental form h must satisfy a
compatibility condition given by the Gauss equation. For a minimal immersions this one reads

KΣ = σ − ‖h‖2g
2

where ‖ · ‖g stands for the norm induced by g in the space of (0, 2)-tensors. Exploiting the part (B), we
can write h := Re(α) which leads to the Gauss equation written in one or the other equivalent forms:

KΣ = σ − ‖Re(α)‖2g
2

or KΣ = σ − |α(x)|2g
4

. (3.10)

Integrating above equation and applying Gauss-Bonnet Theorem, we obtain the identity

2πχ(S) = σ|S|g −
∫
S

‖α(x)‖2g
4

dμg (3.11)

The identity (3.10) can be rephrased as a PDE. Indeed, setting

σ0 :=

⎧⎪⎨
⎪⎩

1 if χ(Σ) = 2

0 if χ(Σ) = 0

−1 if χ(Σ) < 0

(3.12)

from the uniformization Theorem, we can write the induced metric g = e2ug0 with g0 a metric of constant
Gauss curvature σ0. Under this conformal change, the Gauss curvature of the metrics g, g0 are related by
the formula

Kg =
−Δg0u+ σ0

e2u
.

Hence, the Gauss equation (3.10) can then be rephrased as the following PDE

−Δg0u + σ0
e2u

= σ − 1

2

‖h‖2g0
e4u

. (3.13)

Conversely, given a differentiable surface Σ and two symmetric (0, 2)-tensor g, h ∈ Γ(T ∗Σ ⊗ T ∗Σ)
with g positive definite. Then, the solution G(x, t) to (3.4), (3.3) in some maximal interval t ∈ (−t0, t0)

defines a Riemannian metric on S × (−t0, t0) of sectional curvature σ and the second fundamental form
of S × {0} is h.
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For instance, for a totally geodesic immersion, h ≡ 0, the metric (2.2) with expressions (3.4) turn into:

(i) [cosh t]2gij(x)dx
i ⊗ dxj + dt⊗ dt (ii) gij(x)dx

i ⊗ dxj + dt⊗ dt

(iii) [cos t]2gij(x)dx
i ⊗ dxj + dt⊗ dt,

which in case (i) and (iii) are warped products Σ×cosh t R, Σ×cos t R, and a direct product in case (ii). In
all cases, one can check that as Σ is endowed with respectively a metric of curvature −1, 0, 1, then the
respective metrics (i)–(iii) are of sectional curvature −1, 0, 1.

To summarize, once a complex structure has been assigned on the surface, the possibility of realizing
Σ as a minimal surface in a space form with a prescribed second fundamental form is governed by the
solvability of the Gauss equation. So the set Qm(Σ, σ), brought up in the introduction, that collects the
possible tensors that can arise as second fundamental form of a minimal immersion is given by

Qm(Σ, σ) := {h ∈ Q(Σ) : (3.13) admits a solution}, (3.14)

and our goal is ideally to characterize this set.

4 Minimal spheres and tori

In this section, we discuss the possibility of realizing a closed surface Σ of genus zero or one as a
minimal surface in a 3-Riemannian manifold of constant sectional curvature.

4.1 The genus zero case

It is well known that the sphere S2 has only one complex structure (i.e., if X is a Riemann surface
which is diffeomorphic to S2, then X is biholomorphic to the Riemann sphere CP 1), and that the only
holomorphic quadratic differential is identically zero (See [18, Cor 5.4]). This was already known by
Hopf [15] and it plays a fundamental role in his proof that any CMC immersed sphere in R3 is a round
sphere. This property of holomorphic quadratic differential implies that the second fundamental form
of any minimal immersion S2 → M is given by h ≡ 0 (using (3.6)), namely the immersion is totally
geodesic. Using this fact with the identity (3.11) we see that σ = 1 and |S|g = 4π. In particular this
gives: a closed surface of genus zero can only be minimally immersed in a 3-Riemannian manifold of
sectional curvature 1, and furthermore such an immersion must be totally geodesic. Thus,

Qm(S
2, 0) = ∅, Qm(S

2,−1) = ∅, Qm(S
2, 1) = {0}.

Example of such immersion is given by the Σ = S2 × {0} in the warped product S2 ×cos t R. Another
one, is the “equator" Σ = {x ∈ S3 ⊂ R4 : x4 = 0} in the three dimensional round sphere S3, and by a
result of Almgren [3] this is in fact, up to an isometry of S3, the only possible minimal immersion in S3

of a closed surface of genus zero.

4.2 The genus one case

Consider now a torus T 2 = R2/Γ with Γ = {m1e1 +m2e2 : m1,m2 ∈ Z}, and assume the existence
of a minimal immersion : T 2 → M . Integrating the identity (3.11), we get 0 = σ|Σ|g − 1

2

∫
Σ ‖h‖2gdμg
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which may be possible only if:

(i) σ = 0, h ≡ 0 (ii) or, σ = 1 with
∫
Σ

‖h‖2gdμg = 2|Σ|g.

Let us analyze these two cases separately.

Case (i): When σ = 0, the Gauss equation furthermore tells us that the Gauss curvature Kg of the
induced metric g on T 2 is identically zero. Hence, minimal immersions of T 2 in a flat space (σ = 0) are
totally geodesic, and with respect to the induced metric (T 2, g) is a flat torus. Such a minimal immersion
can easily be constructed: Take any flat torus (T2, g0) and consider either M := T 2×R or M := T 2×S1

with the product metric. So the set (3.14) is given by:

Qm(T
2, σ = 0) = {0}.

Case (ii): We first emphasize that by fixing a complex structure on the torus, the only holomorphic
quadratic differential on a torus are the one with constant coefficients α(z) = adz ⊗ dz with a ∈ C. To
see this, one can either invoke the Riemann-Roch Theorem, or observe (like in [7]) that the torus admits
a global complex coordinate and conclude with Liouville Theorem. Hence, the norm ‖h‖2g0 of the second
fundamental with respect to the flat metric g0 of any minimal immersion of a torus is a constant λ2 �= 0,
and the Gauss equation (5.2) reads:

−Δu = e2u − λ2e−2u. (4.1)

This PDE plays also a central role in the contiguous problem of constructing an immersed torus in R3

of constant mean curvature (see [46, 47]). Note that in the limiting case λ = 0, we obtain the equation
studied by Liouville [26], who classified the set of solutions on simply connected domains. For λ > 0,
the situation we are dealing with here, the PDE always admit the trivial constant solutions u ≡ 1

4 lnλ
2,

and therefore

Qm(T
2, σ = 1) = Q(T 2) \ {0}.

I.e., on a torus with a prescribed complex structure, any non-zero holomorphic quadratic differential
arises as the second fundamental form of a minimal immersion of T 2 in a 3-dimensional manifold of
sectional curvature 1.

As a matter of fact, the PDE (4.1) also admits non-trivial solutions. Indeed, setting v := u− 1
2 lnλ the

problem (4.1) is equivalent to the elliptic sinh-Gordon equation on the flat torus T 2:

−Δv = λ(e2v − e−2v), (4.2)

for which {(λ, 0) : λ > 0} is a trivial set of solutions. Existence of non-trivial solutions can be derived
in several ways:

• Looking at one-dimensional solution, i.e. solutions satisfying u(x + te1) = u(x) for all t ∈ R, or
u(x+ te2) = u(x) for all t ∈ R (see [1]).

• By applying bifurcation theory to (4.1). Indeed the linearization of this variational problem at each
(λ, 0) is given by the operator −Δ − 4λ which is non-invertible whenever 4λ = Λn, where {Λn}
stands for the set of positive eigenvalues of the Laplacian operator (−Δ). By the result of [34] each
(Λn, 0) is a bifurcation point, and the description of the local branch can be made more precise if
Λn is simple [11].
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• Similarly to what happens with the sinh-Gordon problem subjected to zero boundary condition [39],
one can also look for large solutions. A blowup analysis for the class of solutions to the PDE that
do not change sign can rely on the results of [8], [9]. However, on a compact surface, the solutions
to (4.2) must change sign since (since

∫
Σ
eu =

∫
Σ
e−u). The specific blowup analysis needed for

the sinh-Gordon equation on a compact surface has been done by Jost and al. [19].

5 Minimal immersions of higher genus surfaces

For surfaces of genus ≥ 2, note that Gauss-Bonnet Theorem applied to the unique hyperbolic metric g0
that is compatible with the prescribed complex structure on Σ shows that the hyperbolic area |Σ|(= |Σ|g0)
is given by

|Σ| = 4π(genus(Σ)− 1). (5.1)

Furthermore, the Gauss equation (3.10) reads:

−Δu = 1 + σe2u − |h|2
4

e−2u, (5.2)

where our convention is that unless written explicitly the Laplacian and norm are with respect to the
hyperbolic metric g0. Problem (5.2) has a variational structure, and is the Euler-Lagrange equation of the
following functional:

J(u) =
1

2

∫
Σ

{
|∇u|2 − σe2u − 2u− |h|2

4
e−2u

}
dμg0, u ∈ H1(Σ). (5.3)

Furthermore, the critical points must satisfy the following natural constraint that arises by integrating the
Gauss equation:∫

Σ

{ |h|2
4

e−2u − σe2u
}
= |Σ|, (5.4)

which defines a codimension 1 submanifold in H1(Σ).

Getting a priori estimates is an important aspect that is needed to understand the structure of the so-
lutions to the Problem (5.2). The Stampacchia duality argument gives immediately W 1,q-estimates for
each 1 ≤ q < 2:

(i) if σ ≤ 0, consider S :=
{
(h, u) : h ∈ Q(Σ), u solves (5.2)

}
. Then, there exists a constant Cq > 0

such that

‖u− ū‖W 1,q ≤ Cq, ∀(h, u) ∈ S, (5.5)

(ii) if σ = 1, for each M > 0 consider SM :=
{
(h, u) : h ∈ Q(Σ), u solves (5.2),

∫
Σ e2u ≤ M

}
, then

‖u− ū‖W 1,q ≤ Cq for all (h, u) ∈ SM .

The main difficulty consists in getting a priori bounds with respect to the H1-norm ‖∇u‖2 + ‖u‖2.
Note that for some (explicit) constant C > 0, there holds∫

Σ

|∇u|2 + |Σ|ū2 ≤ ‖u‖2H1 ≤ C
( ∫
Σ

|∇u|2 + ū2
)
, ∀u ∈ H1(Σ). (5.6)
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Furthermore, given a set E ⊂ {(h, u) ∈ Qm(Σ, σ) × C2(Σ) : u solves (5.2)}, the two following are
equivalent:

(i) E is bounded in Qm(Σ, σ)×H1(Σ),

(ii) the first projection p1(E) is bounded in Qm(Σ, σ) and p2(E) is bounded in L∞(Σ).

Indeed, the fact that (i) implies (ii) follows by using u as a test function in the weak formulation of (6.13).
Conversely if (ii) holds then the right-hand side of (6.13) is bounded in all Lp by the Moser-Trudinger
inequality. Thus, by elliptic regularity we obtain {u − ū : u ∈ p2(E)} is bounded in L∞(Σ) and
thereupon the same holds for p2(E).

By considering the Green’s function of (Σ, g0) defined as

−ΔG(x, ·) = δx − 1

|Σ| ,
∫
Σ

G(x, y)dy = 0,

some immediate upper bounds can be obtained for the solutions to (5.2) in the case σ ≤ 0. They will be
immediate consequence of the following:

Lemma 5.1. Let (Σ, g) be a Riemannian surface, and v ∈ C2(Σ) be a solution to

−Δv = f − f̄

where f ≥ 0 is a given function, and f̄ := 1
|Σ|
∫
Σ f(y)dy. Then, v − v̄ ≥ (min

Σ×Σ
G
) ∫
Σ

f(y)dy.

Proof: The Green’s function G can be split as G(x, y) := 1
2π ln

(
1

d(x,y)

)
+H(x, y) where d stands for

the distance induced by the Riemannian metric g0, and H the regular part that is a smooth function. Since
G is uniformly bounded from below on the compact surface Σ and f ≥ 0, we derive

v(x)− v̄ =

∫
Σ

G(x, y)f(y)dy ≥ (min
Σ×Σ

G
)‖f‖L1.

The above result readily implies,

Lemma 5.2. Assume σ ≤ 0 and let (h, u) ∈ Qm(Σ, σ)× C2 be such that u solves (5.2). Then,

u− ū ≤ (−min
Σ×Σ

G)|Σ|g0 , e−2ū ≤ C0∫
Σ |h(z)|2 , (5.7)

for some constant C0 := C0(Σ, g0)

Proof: Lemma 5.1 applied with f := |h(z)|2
4

e2u−σe−2u (σ ≤ 0) together with (5.4) give the first upper
bound in (5.7). Furthermore, from (5.4) we also have

|Σ| =
∫
Σ

{ |h|2
4

e−2u − σe2u
}
≥ e−2ū

∫
Σ

|h|2
4

e−2[u−ū] ≥ C0e
−2ū

∫
Σ

|h(z)|2, (5.8)

where C0 :=
1
4e

2minΣ×Σ G.
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6 Immersion in a flat space (σ = 0)

For a surface of genus greater than two, minimally immersed in a flat space, the Gauss equation to be
analyzed reads:

−Δu = 1− |h|2
4

e−2u. (6.1)

Note that the PDE has no solution for h ≡ 0, namely using the notation (3.14), it holds 0 �∈ Qm(Σ, 0).
Furthermore, if u solves the equation (6.1) with h, then replacing h by a non-zero multiple th, the new
resulting equation (6.1) is solved by u + ln t2, i.e.

h ∈ Qm(Σ, 0) =⇒ th ∈ Qm(Σ, 0) ∀t �= 0. (6.2)

This invariance reflects the geometrical fact that if Σ is immersed minimally in some flat space form
(M, 〈·, ·〉), then (M, t2〈·, ·〉) is again a flat space form, in which Σ is again minimally immersed.

Each of the many geometrical examples of minimal immersion in flat space form provide existence
of solutions to (6.1). For instance by looking at the data (g, h) arising from Schwarz P-minimal surface
(genus 3) or Neovius surface (genus 9) in the three-dimensional flat torus T 3 = R3/Z3, or from the
examples given in [37]. Those are by far the only one, since given any lattice G in R3, there are infinitely
many distinct minimal surfaces of genus three that embeds in T 3 ([33]). For related discussions see also
[43].

From the analytic point of view, it is a challenging question to understand the space of holomorphic
quadratic differential h(z)dz ⊗ dz for which solutions to (6.1) exist. From the variational point of view,
the functional (5.3) has the small disadvantage that the norm of the Sobolev space does not appear in its
expression. One way of overcoming this, like in [31], is to do the change of variable w := −2(u − ū),
which solves the equivalent problem

−Δw = 2|Σ|
( |h(z)|2ew∫

Σ |h(z)|2ew − 1

|Σ|
)
, w ∈ H̊1(Σ), (6.3)

where H̊1(Σ) stands for the H1-function of average zero. Setting n := genus(Σ) − 1 and remembering
(5.1), the semilinear problem (6.3) can be rewritten as

−Δw = 8πn

( |h(z)|2ew∫
Σ |h(z)|2ew − 1

|Σ|
)
, w ∈ H̊1(Σ), (6.4)

whose solutions are in one-to-one correspondence with the critical points of the functional

Jρ(w) =

∫
Σ

|∇w|2
2

− ρ ln
( ∫
Σ

|h(z)|2ew), ρ = 8πn. (6.5)

Interestingly, equation (6.3) is precisely one of the possible limiting equations on Σ that appears in
Section 7. It is known [31] that the functional (6.5) is bounded from below if and only if ρ ≤ 8π,
coercive for ρ < 8π and weakly lower semicontinuous. Therefore, by applying direct method of calculus
we know that the functional Jρ achieves its minimum whenever ρ < 8π. At the value ρ = 8π, which
corresponds to having a genus two surface, the existence of a minimizer or critical point is more subtle.
If we were dealing with a function |h(z)| > 0, then Ding Jost Li Wang [13] showed that

Δg0(ln |h(p0)|2) > −4, ∀p0 ∈ Σ, (6.6)
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provides a sufficient condition for the existence of a minimum for J8π. However in our case, the function
|h(z)|2 is the hyperbolic norm of a holomorphic quadratic differential, and at each point p0 such that
h(p0) �= 0 a computation shows that

Δg0(ln |h(p0)|2) = −4.

Hence, the functions |h(z)|2 that are relevant for our geometrical problem are on the border line and
fails to satisfy (6.6). The question of existence is still a work in progress.

Let us discuss some a priori bound that one can obtain for the set of solutions (6.1). Due to the
invariance (6.2), let us consider:

(h, u) ∈ Qm(Σ, 0)× C2(Σ),

∫
Σ

|h|2 = 1, u solves (6.1). (6.7)

First, note that multiplying (6.1) by e2u and integrating we get

2

∫
Σ

|∇u|2e2u =

∫
Σ

{e2u − |h|2}

and therefore
∫
Σ e2u ≥ ∫Σ |h|2. Namely, we obtain a lower bound on the area of the minimal surface with

respect to the induced metric:

Given a complex structure on Σ (of genus ≥ 2) with associated hyperbolic metric g0. Then, for any
minimal immersion Σ in a flat space form

Areag(Σ) ≥
∫
Σ

|h(x)|2g0dμg0. (6.8)

Under the normalization (6.7), the inequality (6.8) provides a uniform lower bound on the area. While
such a statement is quite easy to derive when σ = 0, we will see that deriving a similar result in the case
σ = −1 is not as straightforward and requires more tools.

Let us now do a blowup analysis and study how the set of solutions may fail to be bounded in L∞. For
this goal, as in [17] we must take into considerations the zeroes of the holomorphic quadratic differential
h(z)dz ⊗ dz, and introduce at each p ∈ Σ the integer

mp :=

{
0 if h(p) �= 0

γp if h(p) = 0 and (3.8) holds.
(6.9)

We now focus on the proof of Theorem 1.1 which gives information on the possible degeneration of
the metric induced by minimal immersions, in flat spaces, that are compatible with the fixed complex
structure. This will be a consequence of the following analytic version of Theorem 1.1:

Proposition 6.1. Let h ∈ Qm(Σ, 0) and consider a sequence un of solutions to (6.1) such that lim
n→∞ ‖un‖∞ =

∞. Then, there is a finite set B = {p1, · · · pN} of points in Σ (the blow-up set) such that

|h|2
4

e−2un ⇀ 4π
∑
p∈B

(1 +mp)δp,
∑
p∈B

(1 +m(p)) = genus(Σ)− 1, (6.10)
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in the sense of the weak convergence of measures. Furthermore, for each 1 < q < 2 we have

un − ūn
W 1,q

⇀ −
∑
p∈B

4π(1 +mp)G(p, ·), (6.11)

and on each relatively open set K ⊂⊂ Σ \ B we have:∫
K

e2un → ∞. (6.12)

Proof: To fit the format of some blowup analysis that have been done in the literature, it is more
convenient to rephrase the nonlinear PDE in terms of the function v := −2u

−Δv = 2
( |h(z)|2

4
ev − 1

)
, (6.13)

and in this variable the constraint (5.4) reads,∫
Σ

|h|2
4

ev = 4π
(
genus(Σ)− 1

)
. (6.14)

From (5.7) we obtain v̄n ≤ C . So, there are three possibilities:

(i) ‖vn − v̄n‖∞ ≤ C and |v̄n| ≤ C ,

(ii) ‖vn − v̄n‖∞ ≤ C and v̄n → −∞,

(iii) ‖vn − v̄n‖∞ → ∞.

The case (i) cannot holds, since it would imply ‖vn‖∞ ≤ C in contradiction with the blowup as-
sumption. The alternative (ii) cannot either hold, since it would imply |h|2evn = ev̄n|h|2evn−v̄n → 0,
in contradiction with (6.14). Hence, only (iii) holds, which by Lemma 5.2 (after paying attention to the
sign v := −2u) is in fact equivalent to max

Σ
{vn − v̄n} → +∞.

As a consequence, maxΣ v → ∞ otherwise from the elliptic estimates applied to (6.13) we would get
that vn satisfies the alternative (ii) which cannot hold. Hence, we deduce that

∃p ∈ Σ and xn → p such that v(xn) → +∞. (6.15)

If the blow up point p in (6.15) is such that h(p) �= 0, then (6.14) gives a uniform bound
∫
Br(p)

evn ≤ C

in a small ball Br(p). Therefore, after writing the PDE in local coordinates, applying the results of
Brezis-Merle [8] and Li-Shafrir [25] we deduce that in a small ball Br(p) we have

2
|h|2
4

evn ⇀ 8πNδp.

Furthermore, it is well known that through a Pohozaev identity we must have N = 1.

If h(p) = 0, by the results of [5] we obtain 2
|h|2
4

evn ⇀ 8π(1 +mp)δp, where mp is the multiplicity of
the zero of h. Hence, combining all those results we obtain:

|h|2
4

evn ⇀ 4π
∑
p∈B

(1 +mp)δp, (6.16)
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and in particular, this weak converges gives

4π(genus(Σ)− 1)
(6.14)
=

∫
Σ

|h|2
4

evn →
∑
p∈B

4π(1 +mp).

Coming back to the original variable u, the conclusion (6.10) follows.

Since wn := vn − v̄n (= 2[un − ūn]) is bounded in each W 1,q for 1 < q < 2 (see (5.5)), this sequence
converges weakly in all W 1,q to some w. Using the equation (6.13), we have −Δwn = 2

( |h(z)|2
4 ev − 1

)
and as a result of the convergence (6.16) we obtain in the limit

−Δ
(w
2

)
=
∑
p∈B

4π(1 +mp)δp − 1,

∫
Σ

w = 0.

Recalling (5.1) this equation can be written as

−Δ
(w
2

)
=
∑
p∈B

4π(1 +mp)
{
δp − 1

|Σ|
}
,

∫
Σ

w = 0,

and as a result we have
w

2
=
∑
p∈B

4π(1 +mp)G(p, ·). Thus, the conclusion (6.11) follows.

Finally (6.12) follows by noting that on each relatively compact set K ⊂⊂ Σ \ {p1, · · · , pN}, on the
one hand we have∫

K

e−2un =

∫
K

evn → 0,

and on the other hand

0 < |K| =
∫
K

1dμg0 =

∫
K

eune−un ≤
⎛
⎝∫

K

e2un

⎞
⎠

1/2⎛
⎝∫

K

e−2un

⎞
⎠

1/2

=

⎛
⎝∫

K

e2un

⎞
⎠

1/2

o(1).

Hence,
∫
K
e2un → ∞.

An interesting question is to understand if a blowup point can be or not a zero of the holomorphic
quadratic differential. From the relation in (6.10) one obtain for instance the following

(i) If Σ has genus two, then (6.10) can only be satisfied if the blowup set B = {p} with h(p) �= 0.

(ii) If Σ has genus three, the relation (6.10) can only be satisfied if: B = (p1, p2) with h(pi) �= 0, or
B = {q} with h(q) = 0 of multiplicity two.

(iii) If h ∈ Q(Σ) has only one zero {q}, this one must have multiplicity 4(genus (Σ) − 1) (see (3.9))
and (6.10) can only be satisfied if B ∩ {q} = ∅.

7 Minimal immersion in hyperbolic spaces

Given a surface Σ of negative Euler characteristic, we look now at the problem of realizing Σ as a
minimal surface in a hyperbolic space form by assigning the complex structure and second fundamental
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form. The set Qm(Σ,−1) of holomorphic quadratic differentials for which this is possible is given by
the elements h for which the following Gauss equation admits a solution:

−Δu = 1− e2u − |h|2
4

e−2u. (7.1)

The solutions are subjected to the natural constraint (5.4) that reads∫
Σ

|h|2
4

e−2u +

∫
Σ

e2u = 4π(genus − 1), (7.2)

which states that the“bending energy" added to the area measured with the induced metric is determined
by the genus of the surface. Furthermore, we can exploit the fact that the above problem is the Euler
Lagrange equation of the functional (5.3) which for convenience we write explicitly

J(h;u) =
1

2

∫
Σ

{
|∇u|2 + e2u − 2u− |h|2

4
e−2u

}
dμg0, u ∈ H1(Σ). (7.3)

The main difference with respect to the flat or spherical space forms considered before is the fact that
h ≡ 0 ∈ Qm(Σ). Indeed, we have seen at the end of Section 3 that Σ (of negative Euler characteristic),
endowed with the hyperbolic metric, can be realized as a totally geodesic surface in the space form
Σ×cosh t R. From a PDE point of view, when h ≡ 0, Problem (7.1) admits u ≡ 0 as a solution, which is
the unique one. This is in contrast with the case σ ∈ {0, 1} for which no such totally geodesic immersion
is possible when the surface Σ has negative Euler characteristic. Let us observe the following

(i) By applying the maximum principle we deduce that, if h ∈ Qm(Σ,−1) \ {0}, then each solution u

to (7.1) satisfies u < 0.

(ii) Using in (7.2) the inequality 2ab ≤ a2 + b2, which is strict unless a = b, we obtain∫
Σ

|h| < 4π(genus − 1). (7.4)

Note that the equality is strict unless e2u = |h|
2

a.e., which due to the presence of zeros for h (see
(3.9)) would imply u is unbounded, which is not the case.

The fact that Qm(Σ,−1) is not reduced to h ≡ 0 is proved in [45], where by fixing h ∈ Q(Σ)

an application of the implicit function theorem shows that th ∈ Qm(Σ,−1) when t is small. More
specifically, consider the smooth map

F : Q(Σ)×W 2,2(Σ) → L2(Ω), (h, u) → −Δu− 1 + e2u +
|h|2
4

e−2u, (7.5)

where Q(Σ) is considered as a set of parameter, a finite dimensional space isomorphic to R2n for some
n ≥ 3 (as mentioned in (3.7)). Then,

Proposition 7.1. There exists an open set U1 × U2 ⊂ Qm(Σ,−1) × W 2,2(Σ) containing (0, 0), and a
smooth map f : U1 → U2 such that

F−1(0) ∩ (U1 × U2

)
=
{
(h, f(h)) : h ∈ U1},
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and in particular the set Qm(Σ,−1) contains an open neighborhood of h ≡ 0.

Furthermore, Qm(Σ,−1) is a bounded star-shaped set with respect to h ≡ 0.

Proof: At (h, u) = (0, 0), the partial derivative with respect to the variable u is given by the bounded
invertible linear operator

D2F(0,0) : W
2,2(Σ) → L2(Σ), ξ → −Δξ + 2ξ,

and therefore the conclusion of the first part of the proposition follows by applying the implicit function.

Concerning the property to be star-shaped, choose h ∈ Qm(Σ,−1) and let uh be a solution to the Gauss
equation (7.1). Looking at th for some t ∈ [0, 1] we note that

F (th, uh) = −Δuh − 1 + e2uh + t2
|h|2
4

e−2uh ≤ F (uh, h) = 0

namely uh is a subsolution for the Gauss equation (7.1) with the quadratic differential th. On the other
hand, F (th, 0) = t2 |h|

2

4 > 0, namely we have a supersolution for (7.1) with the quadratic th. Then, by
considering the following closed and convex set of H1(Σ)

M :=
{
ξ ∈ H1(Σ) : u := uh ≤ ξ ≤ u := 0 a.e.

}
,

we can follow, up to some minor modifications, the Perron’s method in its variational form given in
Struwe [40]. His arguments show that the functional Jth

∣∣
M

restricted to M admits a minimizer, which
is shown to be a critical point of Jth. This shows that if h ∈ Qm(Σ,−1) then th ∈ Qm(Σ,−1) for each
t ∈ [0, 1]. Hence Qm(Σ,−1) is star-shaped with respect to the origin. The boundedness of Qm(Σ,−1)

is a consequence of (7.4).

Before saying more on the existence of solutions (7.1), we state the following general known facts:

Lemma 7.2. Let (Σ, g) be a closed Riemannian surface, f ∈ C2(Σ×R,R) and assume that the problem

−Δu = f(·, u), u ∈ H1(Σ), (7.6)

admits a solution u0. Then the following hold:

(a) If u0 is a maximal solution1, and u0 < ū for some supersolution ū ∈ H1(Σ), then u0 is stable in
the sense that λ1(−Δg − ∂2f(·, u0)) ≥ 0 or equivalently,∫

Σ

{|∇gξ|2g − ∂2f(·, u0)ξ2
}
dμg ≥ 0, ∀ξ ∈ H1(Σ) (7.7)

Furthermore, if s → f(·, s) is concave, then any stable solution u0 of (7.6) satisfies

(b) u0 is a maximal solution, and in particular there is only one stable solution.

(c) For any subsolution u we have u ≤ u0.

(d) If λ1(−Δg − ∂2f(·, u0)) = 0, then u0 is the unique solution to (7.6).

1 u0 is called a maximal solution if for any solution ũ of (7.6) we have ũ ≤ u0
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Proof: (a) Set F (s) :=
∫ s

0
f(τ)dτ and I(u) :=

∫
Σ

{ |∇gu|2g
2

− F (·, u)}dμg whose critical points are the
solutions to (7.6). Then, working with the set M :=

{
ξ ∈ H1(Σ) : u0 ≤ ξ ≤ u a.e.

}
, as in the proof

of Prop. 7.1, the functional I|M achieves its minimum in M , which is also a critical point of I . By the
maximality property of u0, the minimum of I|M must coincide with u0. Therefore, given 0 ≤ ξ ∈ C1(Σ),
for some tξ > 0 we have

u0 + tξ ∈ M, I(u0 + tξ)− I(u0) ≥ 0, ∀t ∈ [0, tξ].

Doing a second-order expansion at t = 0 we obtain:

0 ≤ I(u0 + tξ)− I(u0) =
t2

2
D2I(u0)(ξ, ξ) + o(t2),

and therefore D2I(u0)(ξ, ξ) ≥ 0. It follows that∫
Σ

{|∇gξ|2g − ∂2(·, u0)ξ2
} ≥ 0, ∀ξ ∈ C1(Σ),

and by density the previous inequality holds for all ξ ∈ H1(Σ). This concludes the proof of (7.7).

(b) Let ũ be a solution to (7.6), and assume that the open set Ω0 := {x ∈ Σ : ũ−u0 > 0} is not empty.
Then, the concavity assumption on f implies

−Δg(ũ− u0) = f(·, ũ)− f(·, u0) < ∂2f(·, u0)(ũ− u0), in Ω0.

Hence, using (ũ− u0)
+ as test function in (7.7) we obtain∫

Σ

{|∇g(ũ− u0)
+|2g − ∂2f(·, u0)|(ũ− u0)

+|2} < 0,

in contradiction with the stability assumption (7.7).

(c) and (d) The argument for (c) can be found in [12, Lemma 2.18] and are already mentioned in
[22]. Applying (c) with a solution u1 we obtain u1 ≤ u0 and since u0 is maximal by (b) we deduce that
u1 ≡ u0.

The above result is useful to clarify the stability of the solutions obtained so far in Prop. 7.1. Let
(h, uh) ∈ Qm(Σ,−1)× C2(Σ) with uh solution of (7.1). Given t ∈ (0, 1), consider the function:

Uth := sup
{
u ∈ H1(Σ) : u ≤ 0, F (th, u) ≤ 0} (7.8)

where F is the map (7.5). Since F (th, uh) ≤ 0 (as already used in the proof of 7.1), the above set is
non-empty and so Uth is well defined. Now a classical argument used in the Perron method shows that
Uth is a maximal solution for the (7.1), and by construction for h �≡ 0 the following strict monotonicity
property holds: for each 0 < t1 < t2 < 1 we have

Ut2h < Ut1h < 0. (7.9)

Furthermore, Lemma 7.6 applied with the function

f(·, u) := 1− e2u − |th|2
4

e−2u (7.10)

shows that Uth is stable, and it is the unique one since the nonlinearity f is concave in the variable u. In
the same spirit as the arguments used by Crandall-Rabinowitz in [12], it turns out that Uth is a strict local
minimum of the associated functional. More specifically,
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Lemma 7.3. Let (h, uh) ∈ Qm(Σ) × C2(Σ) with uh solution of (7.1), and consider for each t ∈ [0, 1)

the maximal solution Uth defined by (7.8). Then, at the crititcal point Uth the second variation of J :=

J(th; ·) defined in (7.3) is coercive, i.e. for some constant Ct > 0 it holds:

D2J(Uth)(ξ, ξ) ≥ Ct‖ξ‖2H1, ∀ξ ∈ H1(Σ). (7.11)

Proof: Choose t0 ∈ (t, 1), and set K := |h|2
4 . Then, the stability property of Ut0h combined with the

monotonicity give:∫
Σ

{|∇ξ|2 + 2e2Uthξ2
} (7.9)

≥
∫
Σ

{|∇ξ|2 + 2e2Ut0hξ2
}

≥
∫
Σ

t20Ke−2Ut0hξ2

(7.9)
≥ t20

∫
Σ

Ke−2Uthξ2,

namely,

−t20

∫
Σ

Ke−2Uthξ2 ≥ −
∫
Σ

{|∇ξ|2 + 2e2Uthξ2
}
. (7.12)

Therefore,

D2J(Uth)(ξ, ξ) =

∫
Σ

{|∇ξ|2 + 2e2Uthξ2 − t2Ke−2Uthξ2
}

(7.12)
≥

∫
Σ

{|∇ξ|2 + 2e2Uthξ2
}− t2

t20

∫
Σ

{|∇ξ|2 + 2e2Uthξ2
}

≥ (1− t2

t20
)

∫
Σ

{|∇ξ|2 + 2e2Uthξ2
}

≥ C‖ξ‖2H1 .

From the above discussion, we have some additional information on the set Qm(Σ,−1). Consider the
Gauss equation (7.1) and denote by f(·, u) the nonlinearity given by (7.5).

Proposition 7.4. (a) The interior of the set Qm(Σ,−1) consists of the element h ∈ Q(Σ) for which the
Gauss equation (7.1) admits a solution Uh with λ1

(−Δ− ∂2f(·, Uh)
)
> 0.

(b) The boundary of Qm(Σ,−1) consists of the elements h ∈ Q(Σ) for which the Gauss equation (7.1)
admits a solution Uh with λ1

(−Δ− ∂2f(·, Uh)
)
= 0.

If h ∈ ∂Qm(Σ,−1), then Lemma 7.2 shows that the associated Gauss equation admits a unique so-
lution. On the other hand, for each h picked up in the interior Qm(Σ,−1) the Gauss equation admits a
solution which is a local minimizer, and in [16] we showed that in this case the functional Jh exhibits a
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mountain pass geometry. Furthermore, we also proved that the functional Jh satisfies the “Palais-Smale
condition", a property that ensures the compactness of the flow-line defined by the negative gradient of
the functional. This leads to the following result:

Theorem 7.5 (Unstable Solution, [16]). Consider an element h in the interior of Qm(Σ,−1). Then, the
Gauss equation (7.1) admits a unique stable solution Uh, and an unstable one uh.

Furthermore, as ‖h‖ → 0 we have Uh → 0, whereas e2uh converges to zero at some points on the
surface Σ.

This multiplicity results shows that once the complex structure is fixed, there are at least two geometri-
cally distinct minimal immersions of Σ (in some hyperbolic space) with same second fundamental form
h. Their induced metrics behave very differently for small h: one converges to the hyperbolic metric g0
associated with the complex structure, and the second one degenerates. Understanding the way how in
this second case the induced metric can degenerate as ‖h‖ → 0 is the purpose of Theorem 1.2. We study
this by fixing h ∈ Q(Σ) and studying as t → 0 the behavior of (th, uth) with uth solution of the Gauss
equation (7.1) satisfying ‖uth‖L∞ → ∞.

Proof of Theorem 1.2: The result is in [17], but we have here restructured the proof to highlight the
possible behaviors of Areagn(Σ). First, the induced metrics and second fundamental form (e2ung0, tnh)

satisfy the Gauss equation (7.1) and the natural constraint (7.2). After setting v := −2un ≥ 0 those
relations read

−Δvn = 2
(t2n|h|2

4
evn + e−vn − 1

)
, vn ≥ 0, (7.13)∫

Σ

t2n|h|2
4

evn +

∫
Σ

e−vn = 4π(genus (Σ)− 1). (7.14)

By assumption max
Σ

vn → ∞ and we note that the area of Σ with respect to the induced metric is given

by Areagn(Σ) =
∫
Σ e2undμg0 =

∫
Σ e−vndμg0. There are three possible behaviors for the sequence vn:

(a) t2n|h|2evn ≤ C;

(b) t2n|h|2evn is unbounded in L∞(Σ) and
∫
Σ e−vn → 0;

(c) t2n|h|2evn is unbounded in L∞(Σ) and
∫
Σ e−vn ≥ C > 0.

As a preliminary remark, note that (5.7) (with v := −2u) and Jensen’s inequality give

C0

∫
Σ

|tnh(z)|2
(5.7)
≤ e−v̄n ≤ −

∫
Σ

e−vn = e−v̄n−
∫
Σ

e−[vn−v̄n]
(5.7)
≤ e−v̄ne−C , (7.15)

which shows
∫
Σ e−vn → 0 (namely Areagn(Σ) → 0) if and only if v̄n → +∞, and when this occurs we

also have tn → 0.

Case (a): When t2n|h|2evn ≤ C , from the PDE (7.13) we deduce that ‖vn − v̄n‖∞ ≤ C . Since
maxΣ vn → +∞ we must necessarily have v̄n → +∞. Furthermore, (7.15) give

tn → 0 and
∫
Σ

e−vn → 0.

Therefore, by taking also into consideration (7.14), we deduce that (1.3) holds.
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Now the sequence wn := vn − v̄n satisfies

−Δwn = 2
(
ev̄n

t2n|h|2
4

ewn + e−vn − 1
)

and after integrating we obtain ev̄n

4 := |Σ|+o(1)∫
Σ
t2n|h|2ewn

. So, since the right-hand side of the above PDE is

bounded in L∞, by elliptic regularity we deduce that wn converges in all W 2,p to a function w that solves
the PDE (1.4).

In the case where t2n|h|2evn is unbounded in L∞(Σ), like in the proof of Prop. 6.1 we can rely on the
results of [8], [25], [5] and deduce that there is a finite set B ⊂ Σ

2
|tnh|2
4

evn ⇀
∑
p∈B

8π(1 +mp)δp, (7.16)

where the integers mp are given by (6.9). The further asymptotic properties of vn depends now on
whether the integral

∫
Σ e−vn does or does not tend to zero.

Case (b):
∫
Σ e−vn → 0 (equivalent to Areagn(Σ) → 0).

Then by (7.15), we have v̄n → +∞, tn → 0, and by using also (7.14) the conclusion (1.5) holds. Now
since sequence wn := vn− v̄n ⇀ w weakly in W 1,q (by (5.5)), from the PDE (7.13) and (7.16) we deduce
that the limiting equation for w is

−Δw =
∑
p∈B

8π(1 +mp)δp − 1,

∫
Σ

w = 0,

which can be rewritten (recalling (5.1)) as

−Δ
(w
2

)
=
∑
p∈B

4π(1 +mp)
{
δp − 1

|Σ|
}
,

∫
Σ

w = 0.

Hence, (1.6) follows.

Case (c) If
∫
Σ e−vn ≥ C > 0.

By (7.15) we have that v̄n ≤ C . Thus from (5.5) the sequence is bounded in W 1,q for each q ∈ (1, 2)

and as a result vn
W 1,q

⇀ v. Furthermore, since e−vn ≤ 1, by the Lebesgue dominated convergence we have
e−vn → e−v in all Lp space. Since on each compact set K ⊂ Σ \ B we have tn

∫
K |h|2evn → 0 we must

have tn → 0. Furthermore, (7.14) and (7.16) give

4π
∑
p∈B

(1 +mp) +

∫
Σ

e−v = 4π
(
genus(Σ)− 1

)
.

Hence, (1.7) holds. The conclusion (1.8) follows from the convergences vn
W 1,q

⇀ v and (7.16).

Interestingly, the limiting equation (1.4) is exactly the same as the Gauss equation governing minimal
immersions in a flat space written in the equivalent form (6.3). Based on the known existence results of
minimal immersions of surfaces of genus higher than three in a flat three dimensional torus, we know
that for some h those two problems admit solution for each n ≥ 3. It would be useful to understand
those two equations from an analytical point of view, and clarify the class of h for which such existence
result holds.
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Concerning the limiting equation (1.8) arising as third possible alternative in Theorem 1.2, it does
always have a solution. It is a consequence of the following more general result.

Proposition 7.6. Let (Σ, g) be a closed Riemannian surface, P ⊂ Σ a finite set and (αp)p∈P real numbers
such that

|Σ|g −
∑
p∈P

αp > 0

Then the problem

−Δgu+ e2u = 1−
∑
p∈P

αpδp (7.17)

admits a unique solution.

Proof: The problem (7.17) with measures can be rewritten as a semilinear problem with a spatial
weight. Indeed, by considering the Green’s function G(p, ·) at each point p ∈ P and setting

ũ := u+
∑
p∈P

αpG(p, ·)

K := e−2
∑

p∈P αpG(p,·) ∈ C0(Σ) and A := 1−
∑

p∈P αp

|Σ|g > 0,

then Problem (7.17) is equivalent to

−Δgũ+Ke2ũ = A, ũ ∈ H1(Σ).

The associated functional is given by

J(f) =
1

2

∫
Σ

{|∇f |2 +Ke2f − 2Af}, f ∈ H1(Σ),

and we claim that it admits a minimizer. Indeed if fn is a minimizing sequence, we have∫
Σ

|∇(f − f̄)|2 ≤ C, e2f̄
∫
Σ

Ke2[f−f̄ ] ≤ C, −f̄ ≤ C. (7.18)

Observe now that by applying Jensen, Hölder and Poincaré’s inequality we obtain∫
Σ

Ke2[f−f̄ ] ≥ ‖K‖1e
2

‖K‖1
∫
Σ
K[f−f̄ ] ≥ ‖K‖1e−2 2

‖K‖1 ‖K‖2‖f−f̄‖2 ≥ C.

Using this lower bound in (7.18) we obtain
∫
Σ |∇(fn − f̄n)|2 + |f̄n| ≤ C , from which we easily see

that fn is bounded inH1(Σ) and so it converges weakly in this space to some f . By standard argument
we deduce that f is a minimizer. The uniqueness follows for instance from the fact that J is strictly
convex.

In some situations, we are able to show that only the third type of blowup behaviors stated in Theo-
rem 1.2 can occur. This will be discussed in a later work.
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